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Abstract 
 

Convolutional Neural Network (CNN) is used 

extensively from digit recognition to natural language 

processing. Commonly, the error back propagation 

method is used to learn the CNN models. However, 

when learning with the error backpropagation 

method, the learning efficiency is not sufficiently high 

due to a problem called the vanishing gradient 

problem as the CNN model becomes deeper. In the 

feedforward neural networks, the error is propagated 

in the opposite direction, which makes it difficult for 

the human to intuitively understand. Therefore, the 

implementation of the learning algorithm is difficult. 

If the weights of a neural network model are regarded 

as genes and if we let the system learn these genes by 

evolution, the learning process may become more 

intuitive and efficient than the existing 

backpropagation method. In this paper, how to learn 

the model by applying a genetic algorithm is 

addressed. The simplest fully-connected model and 

the LeNet-5 model with MNIST, which is a widely 

used dataset for handwritten digits recognition are 

used to confirm the effectiveness of the proposed 

method. 
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1. Introduction 
 

Recently, Convolutional Neural Network (CNN) 

has been widely used in the field of object recognition. 

The neural network model has been developed by 

increasing the scale of the model and it has become 

deeper to obtain higher accuracy [1]. However, in the 

backpropagation learning method, learning efficiency 

becomes worse as the network becomes deeper 

mainly due to a problem called vanishing gradient 

problem [2]. Even though some models can 

effectively make inferences, they are less portable and 

inflexible because their network structures can only 

be used in specific applications [3]. Due to these 

reasons, implementation based on conventional 

methods may not lead to an efficient design.   

In this paper, we propose a method to learn neural 

networks with a genetic algorithm. The generic 

algorithm is advantageous in the sense that it is 

intuitive and applicable to a wide range of 

optimization problems, and therefore, our proposed 

implementation does not change structure or format of 

the existing neural network model. In particular, the 

generic algorithm can be used as a partial learning 

method to alleviate the vanishing gradient problem of 

the existing backpropagation learning method. In 

addition, it has a better chance to get good results than 

the backpropagation method because the genetic 

algorithm is less likely to get stuck in local minima. 

Section 2 describes the genetic algorithm, and 

Section 3 describes how the genetic algorithm was 

applied to the neural network. The experimental 

results are shown in Section 4 and the paper is 

concluded in Section 5. 

 

 
Figure 1. Overall process of the genetic algorithm 

 

2. Genetic Algorithm 
 

The genetic algorithm is a representative method 

of evolutionary computation that solves problems by 

mimicking real biological evolution. Based on natural 

genetics, Darwin's theory of survival of the fittest is 

the basic concept. After listing genes which are the set 



of the solutions of the problem, we gradually change 

the genes to produce better solutions. 

Figure 1 shows the overall process of the genetic 

algorithm. The entire process is performed in the order 

of initialization, repetition of selection-crossover-

mutation, and termination [4].  

The initialization operation expresses the solution 

to solve with the genetic algorithm as a gene. Just as 

the genetic traits of a living organism are represented 

by genes that are a collection of genomes, the set of 

solutions is expressed as a gene through a data 

structure such as an array of numbers or a string. To 

represent the solutions, a specific number of genes are 

initialized. Genotyping methods include binary, 

integer, real value, and permutation, and strategies for 

initializing the genes are random, heuristic, and so on. 

The selection operation measures the fitness for 

each gene and selects the candidate of the parent from 

each generation to the next generation. The selection 

strategy includes roulette wheel, stochastic universal 

sampling, tournament, rank, and random. 

The crossover operation generates next 

generation’s genes through crossing between the 

selected parent candidate genes. Generally, two 

parents are selected and crossed between each other. 

Through the crossover of the parents, they construct a 

new gene called child by receiving parent’s genetic 

factor at a specific location. The crossover strategy 

includes one-point, multi-point, uniform and whole 

arithmetic recombination. 

The mutation operation mimics the natural 

phenomenon that the result of the preceding crossing 

operation may be irrelevant to the crossover strategy. 

This can increase the diversity of the gene so that it 

does not fall into the local optimum. The mutation 

strategy includes bit-flip, swap, scramble, inversion, 

and random. 

Through repetition of these operations, only those 

genes that adapt to the environment with high fitness 

survive and these good genes are spread to the future, 

and those that do not cannot survive are abandoned 

automatically. If this process is repeated while a 

certain termination condition is met, the best gene 

among the remaining children is selected as the final 

solution and the process is terminated. 

 

3. Implementation of Genetic Algorithm 

on Neural Networks 
 

In order to apply the genetic algorithm to the 

neural network, we apply the neural network’s weight 

as a gene and let the genes evolve. We use the MNIST 

dataset to learn the neural network with a genetic 

algorithm. We also use a fully-connected model and a 

LeNet-5 model as neural network models. 

The MNIST dataset used in numerical recognition 

consists of 60,000 training sets and 10,000 test sets 

which are classified into 10 classes from 0 to 9 black 

and white handwritten digits of 28 * 28 pixels images 

[5]. 

 

 
Figure 2. Fully-connected model 

 

The fully-connected model infers a result by 

deducting argument of the maxima of the output, 

which is the sum of the 28 * 28 pixels MNIST image 

multiplied by 7,840 weights as shown in Figure 2. 

 

 
Figure 3. LeNet-5 model 

 

Figure 3 shows the LeNet-5 model inferring the 

MNIST image, which can be used with high accuracy 

[6]. 

 

 
Figure 4. Initialization and selection process 

 

In the initialization process, a weight vector listing 

all the weights is expressed as a gene. In this process, 

we used the real type, which is a common way of 

expressing weight values in general CNN models. 

A combination of a heuristic method and a random 

method is employed to initialize genes. The heuristic 

method helps to speed-up learning by using already 

known information. We use a weight vector that has 

been pre-trained with about 92% accuracy in the fully-

connected model and 99% in the LeNet-5 model. In 

addition, we add a random real type value α as 

truncated normal distribution to the existing weight 

vector. In this way, we have initialized  
𝑁∗(𝑁+1)

2
  

parents as shown in Equation (1) as in the 

initialization part of Figure 4. 

 

𝑊𝑛 =  𝑊 +  𝛼𝑛                      (1) 

(𝑊: Initial weight vector, μ(𝛼𝑛) = 0, σ(𝛼𝑛) = 0.02) 

 



In the selection process, the fitness of  
𝑁∗(𝑁+1)

2
 genes are measured using a training set with a 

batch size of 1000 randomly selected for each 

generation. Fitness was calculated as the accuracy rate 

of the 1000 randomly selected images. Rank-based 

selection is simply picking out a certain number of 

best genes among the parent generation. We select N 

parents which will be transferred to the next 

generation from 𝑊1  to 𝑊𝑁 based on the rank of the 

genes with the highest fitness among the parents. 

 

 
Figure 5. Child crossing with parents 

 

In the crossing process, whole arithmetic 

recombination is used as a crossing strategy, crossing 

the N parents selected from 𝑊1  to 𝑊𝑁, respectively. 

This strategy is often used when the genotype of the 

parent is the real. If 𝑊𝑥 and 𝑊𝑦 are the selected genes, 

the gene of a child can be computed as Equation (2). 

 

                  𝑊𝑐ℎ𝑖𝑙𝑑 =  𝑡 ∗  𝑊𝑥 + (1 − 𝑡) ∗ 𝑊𝑦          (2) 

 

We set t = 0.5 so that the child can inherit the 

parental characteristics evenly. Therefore, it is no 

longer necessary to calculate the other half because of 

symmetric values as shown in Figure 5. Additionally, 

each W automatically inherits the existing parental 

traits in the next generation, ensuring that the genes of 

the next generation are not worse than those of the 

parental generation. The 
𝑁∗(𝑁+1)

2
 child generations of 

the next generation are made with crossover of N 

parent generations. 

Mutations should be present for the diversity of 

genes in the crossing process. But it is more likely to 

be worse than the likelihood of a better outcome in a 

real value weight vector, and is naturally culled. For 

this reason, we skip the mutation process. 

These  
𝑁∗(𝑁+1)

2
 child genes are the genes of the 

next generation of parents. After repeating the P-

generation of the selection-crossover process, the 

gene with the highest fitness value is used as a final 

result. 

We set N = 15 and repeat the genetic operation by 

the number of generations P = 10. After the repetition 

is completed, the best gene is used as the result. 

4. Experimental Results 
 

Table 1. Fitness for Fully-Connected model 

Gen Best(%) Worst(%) Avg(%) 

0 92.16 91.89 92.13 

1 92.41 92.23 92.38 

2 92.55 92.43 92.51 

3 92.59 92.57 92.58 

4 92.61 92.55 92.59 

5 92.63 92.59 92.61 

6 92.64 92.62 92.63 

7 92.65 92.64 92.64 

8 92.65 92.65 92.65 

9 92.65 92.65 92.65 

10 92.65 92.65 92.65 

 

Table 2. Fitness for LeNet-5 model 

Gen Best(%) Worst(%) Avg(%) 

0 99.18 99.11 99.15 

1 99.22 99.20 99.19 

2 99.23 99.21 99.20 

3 99.24 99.23 99.23 

4 99.24 99.24 99.23 

5 99.24 99.24 99.23 

6 99.24 99.24 99.23 

7 99.25 99.24 99.24 

8 99.25 99.25 99.25 

9 99.25 99.25 99.25 

10 99.25 99.25 99.25 

 

 
Figure 6. Distribution of Fully-Connected model 

results after 100 experiments 

 

 
Figure 7. Distribution of LeNet-5 model results 

after 100 experiments 



As shown in Table 1 and Table 2, we can observe 

that the genes have already converged to a good gene 

before the 10th generation. 

When the random method is used for initialization, 

the weights can be different. But, even with same 

weights, the results can be different since the batch is 

collected randomly for each generation. Figure 6 

shows the distribution of results with 100 experiments 

under the same conditions. 

In Figure 6, the fully-connected model shows an 

accuracy of up to 92.71%, with the average accuracy 

of 92.65%. As shown in Figure 7, the LeNet-5 model 

shows an accuracy of up to 99.31%, with the average 

accuracy of 99.24%. In Figure 6 and Figure 7, the 

accuracy of Generation 0 is 92.16% and 99.18%, 

respectively, and the accuracy is improved by learning 

the model using the proposed genetic algorithm. 

 

5. Conclusion 
 

In this paper, we apply the genetic algorithm to 

two types of neural network models: the fully-

connected model and the LeNet-5 model, using the 

MNIST dataset used for numerical recognition. Since 

the genetic algorithm is flexible and widely applicable, 

one can automatically learn the model without 

modifying the model or adjusting the value format. 

Also, in general, partial learning is impossible 

because we do not know what the hidden layer output 

is. However, in the genetic algorithm, it is possible to 

select a layer or region to be partially learned, and then 

automatically enhance the portion. 

Since the genetic algorithm is an evolutionary 

technique that directly simulates the phenomenon, 

unlike existing machine learning techniques, the 

computational complexity is very high. However, as 

the model grows deeper and predicting or controlling 

a single layer directly comes harder, it is expected that 

the usage of genetic algorithm can leverage automatic 

learning of the model in more complex environments. 
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