
Application of Genetic Algorithm to Convolutional Neural Networks

Dae-Gon Yang, Sang-Soo Park, and Ki-Seok Chung

Department of Electronics and Computer Engineering, Hanyang University

Haengdang 1-dong, Seongdong-gu, Seoul, 133-791, South Korea

dgwgdgwg@naver.com, sonicstage12@naver.com, kchung@hanyang.ac.kr

Abstract

Convolutional Neural Network (CNN) is used

extensively from digit recognition to natural language

processing. Commonly, the error back propagation

method is used to learn the CNN models. However,

when learning with the error backpropagation

method, the learning efficiency is not sufficiently high

due to a problem called the vanishing gradient

problem as the CNN model becomes deeper. In the

feedforward neural networks, the error is propagated

in the opposite direction, which makes it difficult for

the human to intuitively understand. Therefore, the

implementation of the learning algorithm is difficult.

If the weights of a neural network model are regarded

as genes and if we let the system learn these genes by

evolution, the learning process may become more

intuitive and efficient than the existing

backpropagation method. In this paper, how to learn

the model by applying a genetic algorithm is

addressed. The simplest fully-connected model and

the LeNet-5 model with MNIST, which is a widely

used dataset for handwritten digits recognition are

used to confirm the effectiveness of the proposed

method.

Keywords: Genetic Algorithm, Convolutional Neural

Network (CNN), Machine Learning, Evolutionary

Computation.

1. Introduction

Recently, Convolutional Neural Network (CNN)

has been widely used in the field of object recognition.

The neural network model has been developed by

increasing the scale of the model and it has become

deeper to obtain higher accuracy [1]. However, in the

backpropagation learning method, learning efficiency

becomes worse as the network becomes deeper

mainly due to a problem called vanishing gradient

problem [2]. Even though some models can

effectively make inferences, they are less portable and

inflexible because their network structures can only

be used in specific applications [3]. Due to these

reasons, implementation based on conventional

methods may not lead to an efficient design.

In this paper, we propose a method to learn neural

networks with a genetic algorithm. The generic

algorithm is advantageous in the sense that it is

intuitive and applicable to a wide range of

optimization problems, and therefore, our proposed

implementation does not change structure or format of

the existing neural network model. In particular, the

generic algorithm can be used as a partial learning

method to alleviate the vanishing gradient problem of

the existing backpropagation learning method. In

addition, it has a better chance to get good results than

the backpropagation method because the genetic

algorithm is less likely to get stuck in local minima.

Section 2 describes the genetic algorithm, and

Section 3 describes how the genetic algorithm was

applied to the neural network. The experimental

results are shown in Section 4 and the paper is

concluded in Section 5.

Figure 1. Overall process of the genetic algorithm

2. Genetic Algorithm

The genetic algorithm is a representative method

of evolutionary computation that solves problems by

mimicking real biological evolution. Based on natural

genetics, Darwin's theory of survival of the fittest is

the basic concept. After listing genes which are the set

of the solutions of the problem, we gradually change

the genes to produce better solutions.

Figure 1 shows the overall process of the genetic

algorithm. The entire process is performed in the order

of initialization, repetition of selection-crossover-

mutation, and termination [4].

The initialization operation expresses the solution

to solve with the genetic algorithm as a gene. Just as

the genetic traits of a living organism are represented

by genes that are a collection of genomes, the set of

solutions is expressed as a gene through a data

structure such as an array of numbers or a string. To

represent the solutions, a specific number of genes are

initialized. Genotyping methods include binary,

integer, real value, and permutation, and strategies for

initializing the genes are random, heuristic, and so on.

The selection operation measures the fitness for

each gene and selects the candidate of the parent from

each generation to the next generation. The selection

strategy includes roulette wheel, stochastic universal

sampling, tournament, rank, and random.

The crossover operation generates next

generation’s genes through crossing between the

selected parent candidate genes. Generally, two

parents are selected and crossed between each other.

Through the crossover of the parents, they construct a

new gene called child by receiving parent’s genetic

factor at a specific location. The crossover strategy

includes one-point, multi-point, uniform and whole

arithmetic recombination.

The mutation operation mimics the natural

phenomenon that the result of the preceding crossing

operation may be irrelevant to the crossover strategy.

This can increase the diversity of the gene so that it

does not fall into the local optimum. The mutation

strategy includes bit-flip, swap, scramble, inversion,

and random.

Through repetition of these operations, only those

genes that adapt to the environment with high fitness

survive and these good genes are spread to the future,

and those that do not cannot survive are abandoned

automatically. If this process is repeated while a

certain termination condition is met, the best gene

among the remaining children is selected as the final

solution and the process is terminated.

3. Implementation of Genetic Algorithm

on Neural Networks

In order to apply the genetic algorithm to the

neural network, we apply the neural network’s weight

as a gene and let the genes evolve. We use the MNIST

dataset to learn the neural network with a genetic

algorithm. We also use a fully-connected model and a

LeNet-5 model as neural network models.

The MNIST dataset used in numerical recognition

consists of 60,000 training sets and 10,000 test sets

which are classified into 10 classes from 0 to 9 black

and white handwritten digits of 28 * 28 pixels images

[5].

Figure 2. Fully-connected model

The fully-connected model infers a result by

deducting argument of the maxima of the output,

which is the sum of the 28 * 28 pixels MNIST image

multiplied by 7,840 weights as shown in Figure 2.

Figure 3. LeNet-5 model

Figure 3 shows the LeNet-5 model inferring the

MNIST image, which can be used with high accuracy

[6].

Figure 4. Initialization and selection process

In the initialization process, a weight vector listing

all the weights is expressed as a gene. In this process,

we used the real type, which is a common way of

expressing weight values in general CNN models.

A combination of a heuristic method and a random

method is employed to initialize genes. The heuristic

method helps to speed-up learning by using already

known information. We use a weight vector that has

been pre-trained with about 92% accuracy in the fully-

connected model and 99% in the LeNet-5 model. In

addition, we add a random real type value α as

truncated normal distribution to the existing weight

vector. In this way, we have initialized
𝑁∗(𝑁+1)

2

parents as shown in Equation (1) as in the

initialization part of Figure 4.

𝑊𝑛 = 𝑊 + 𝛼𝑛 (1)

(𝑊: Initial weight vector, μ(𝛼𝑛) = 0, σ(𝛼𝑛) = 0.02)

In the selection process, the fitness of
𝑁∗(𝑁+1)

2
 genes are measured using a training set with a

batch size of 1000 randomly selected for each

generation. Fitness was calculated as the accuracy rate

of the 1000 randomly selected images. Rank-based

selection is simply picking out a certain number of

best genes among the parent generation. We select N

parents which will be transferred to the next

generation from 𝑊1 to 𝑊𝑁 based on the rank of the

genes with the highest fitness among the parents.

Figure 5. Child crossing with parents

In the crossing process, whole arithmetic

recombination is used as a crossing strategy, crossing

the N parents selected from 𝑊1 to 𝑊𝑁, respectively.

This strategy is often used when the genotype of the

parent is the real. If 𝑊𝑥 and 𝑊𝑦 are the selected genes,

the gene of a child can be computed as Equation (2).

 𝑊𝑐ℎ𝑖𝑙𝑑 = 𝑡 ∗ 𝑊𝑥 + (1 − 𝑡) ∗ 𝑊𝑦 (2)

We set t = 0.5 so that the child can inherit the

parental characteristics evenly. Therefore, it is no

longer necessary to calculate the other half because of

symmetric values as shown in Figure 5. Additionally,

each W automatically inherits the existing parental

traits in the next generation, ensuring that the genes of

the next generation are not worse than those of the

parental generation. The
𝑁∗(𝑁+1)

2
 child generations of

the next generation are made with crossover of N

parent generations.

Mutations should be present for the diversity of

genes in the crossing process. But it is more likely to

be worse than the likelihood of a better outcome in a

real value weight vector, and is naturally culled. For

this reason, we skip the mutation process.

These
𝑁∗(𝑁+1)

2
 child genes are the genes of the

next generation of parents. After repeating the P-

generation of the selection-crossover process, the

gene with the highest fitness value is used as a final

result.

We set N = 15 and repeat the genetic operation by

the number of generations P = 10. After the repetition

is completed, the best gene is used as the result.

4. Experimental Results

Table 1. Fitness for Fully-Connected model

Gen Best(%) Worst(%) Avg(%)

0 92.16 91.89 92.13

1 92.41 92.23 92.38

2 92.55 92.43 92.51

3 92.59 92.57 92.58

4 92.61 92.55 92.59

5 92.63 92.59 92.61

6 92.64 92.62 92.63

7 92.65 92.64 92.64

8 92.65 92.65 92.65

9 92.65 92.65 92.65

10 92.65 92.65 92.65

Table 2. Fitness for LeNet-5 model

Gen Best(%) Worst(%) Avg(%)

0 99.18 99.11 99.15

1 99.22 99.20 99.19

2 99.23 99.21 99.20

3 99.24 99.23 99.23

4 99.24 99.24 99.23

5 99.24 99.24 99.23

6 99.24 99.24 99.23

7 99.25 99.24 99.24

8 99.25 99.25 99.25

9 99.25 99.25 99.25

10 99.25 99.25 99.25

Figure 6. Distribution of Fully-Connected model

results after 100 experiments

Figure 7. Distribution of LeNet-5 model results

after 100 experiments

As shown in Table 1 and Table 2, we can observe

that the genes have already converged to a good gene

before the 10th generation.

When the random method is used for initialization,

the weights can be different. But, even with same

weights, the results can be different since the batch is

collected randomly for each generation. Figure 6

shows the distribution of results with 100 experiments

under the same conditions.

In Figure 6, the fully-connected model shows an

accuracy of up to 92.71%, with the average accuracy

of 92.65%. As shown in Figure 7, the LeNet-5 model

shows an accuracy of up to 99.31%, with the average

accuracy of 99.24%. In Figure 6 and Figure 7, the

accuracy of Generation 0 is 92.16% and 99.18%,

respectively, and the accuracy is improved by learning

the model using the proposed genetic algorithm.

5. Conclusion

In this paper, we apply the genetic algorithm to

two types of neural network models: the fully-

connected model and the LeNet-5 model, using the

MNIST dataset used for numerical recognition. Since

the genetic algorithm is flexible and widely applicable,

one can automatically learn the model without

modifying the model or adjusting the value format.

Also, in general, partial learning is impossible

because we do not know what the hidden layer output

is. However, in the genetic algorithm, it is possible to

select a layer or region to be partially learned, and then

automatically enhance the portion.

Since the genetic algorithm is an evolutionary

technique that directly simulates the phenomenon,

unlike existing machine learning techniques, the

computational complexity is very high. However, as

the model grows deeper and predicting or controlling

a single layer directly comes harder, it is expected that

the usage of genetic algorithm can leverage automatic

learning of the model in more complex environments.

6. Acknowledgement

This work was supported by the Technology

Innovation Program (10076583, Development of free-

running speech recognition technologies for

embedded robot system) funded By the Ministry of

Trade, Industry & Energy (MOTIE, Korea).

References

[1] Simonyan, Karen, and Andrew Zisserman, “Very

deep convolutional networks for large-scale image

recognition”, ICLR, 2015.

[2] Bengio, Yoshua, Patrice Simard, and Paolo

Frasconi, “Learning long-term dependencies with

gradient descent is difficult”, IEEE transactions on

neural networks 5.2, pp.157-166, 1994.

[3] Pan, Sinno Jialin, and Qiang Yang, “A survey on

transfer learning”, IEEE Transactions on knowledge

and data engineering, pp. 1345-1359, 2010.

[4] Whitley, Darrell, “A genetic algorithm

tutorial” Statistics and computing, pp. 65-85, 1994.

[5] LeCun, Yann, Corinna Cortes, and C. J. Burges,

“MNIST handwritten digit database”, AT&T Labs,

http://yann.lecun.com/exdb/mnist, 2010.

[6] LeCun, Yann, “LeNet-5, convolutional neural

networks”, http://yann.lecun.com/exdb/lenet, 2015.

