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ABSTRACT 

Convolutional Neural Network (CNN) has been used in a variety 

of fields such as computer vision, speech recognition, and natural 

language processing. Because the amount of computation has 

increased tremendously, CNN has lately been accelerated through 

accelerators such as Graphic Processing Unit (GPU). However, 

resource-constrained embedded platforms such as Internet of 

Things (IoT) devices cannot afford to have such accelerators. 

Therefore, it is important to accelerate CNN by only the CPU 

efficiently. In this paper, we propose a method to accelerate CNN 

by using the Single Instruction Multiple Data (SIMD) unit 

integrated in many CPUs. Modern CPU includes a SIMD unit 

which is commonly used for vector operations. The proposed 

method implemented on an ARM’s NEON can maximize the 

utilization of vector registers in the SIMD unit. Our proposed 

implementation has achieved a speed-up of up to 2.66 in 

execution time and an energy reduction of up to 3.55 times than 

the conventional implementation. 
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1. INTRODUCTION 
Convolutional Neural Network (CNN), a type of Artificial Neural 

Network (ANN), is a neural network inspired by biological 

organization of the human optic nerve. CNN has been used in a 

variety of fields such as image, speech, and natural language 

processing through excellent recognition capability [1-3].  

The deeper the depth of layers gets, the higher CNN’s object-

recognition accuracy gets. Therefore, there are various attempts to 

increase the number of layers. Correspondingly, the amount of 

computation increases massively in order to achieve better 

classification capability [4-5]. Therefore, CNN may have to 

require high-performance processing units such as Graphics 

Processing Units (GPU). 

However, resource-constrained embedded platforms such as 

Internet of Things (IoT) devices cannot afford to have such 

accelerators because they operate with batteries with limited 

driving capability. Therefore, it is important to accelerate CNN by 

only the CPU efficiently. 

Single Instruction Multiple Data (SIMD) units such as Intel AVX 

[6] and ARM NEON [7] are commonly integrated in modern 

Central Processing Units (CPUs), and they are utilized to 

accelerate media and data streaming [8]. The SIMD unit is 

capable of performing vector operations which carry out multiple 

operations of a single type in parallel. It also specializes in 

processing Multiply-Accumulate (MAC) operations because 

MAC operations are heavily executed in image processing and 

machine learning [9-10]. 

In this paper, we propose a technique to accelerate CNN with 

SIMD processing units. A CNN called LeNet-5, which is widely 

used in the Optical Character Recognition (OCR) field [11], is 

accelerated by utilizing SIMD instructions in NEON, the SIMD 

processing unit inside ARM CPUs. The NEON technology was 

first introduced in the ARMv7 architecture and it has been 

available with ARM Cortex-A class processors.  

The SIMD lane is the space in which the data element is assigned 

to a vector register. One data element is assigned to one SIMD 

lane. When optimizing CNN with SIMD instructions in 

conventional methods, the SIMD lanes are not efficiently utilized 

because most convolution kernels have an odd size in both widths 

and heights while the number of SIMD lanes in a vector register is 

even. Therefore, we propose a method called Depth-Directional 

Method (DDM) to vectorize convolution kernels in the depth 

direction. In most CNN models, convolution kernels have an even 

depth. In general, each convolution layer has distinct 

characteristics. Therefore, in the proposed DDM, layer-specific 

SIMD optimization methods are applied. As shown in Figure 1, 

LeNet-5 consists of 3 convolution layers, 2 sub-sampling layers, 

and 2 fully-connected layers. First, in Convolution Layer 1 (C1), 

2D convolution kernels are used while in Convolution Layer 2 

and 3 (C2 and C3), 3D convolution kernels are used. We propose 

a method that minimizes the number of idle lanes to fully utilize 

the SIMD processing units. The proposed DDM in LeNet-5 

achieves a speed-up of 3.45 in C1, 2.97 in C2, 3.32 in C3 by 

efficiently utilizing the SIMD resource. 
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The rest of paper is organized as follows. Section 2 introduces 

CNN and our target CNN model called LeNet-5. Section 3 

presents an introduction of SIMD in NEON and describes the 

proposed method. Section 4 shows our experiment results. Section 

5 concludes this paper. 

2. CONVOLUTIONAL NEURAL 

NETWORK 
CNN, which is specialized in computer vision, is a model that 

mimics human vision processing. CNN is superior in image 

recognition among deep running techniques. CNN has attracted a 

lot of attention with overwhelming performance in image 

recognition [12]. CNN typically consists of two processes, feature 

extraction and classification. Feature extraction with convolutions 

and sub-samplings is a process to extract features of an object 

such as lines and edges. Classification with full-connections 

selects an object of the most probable category based on the 

extracted features. LeNet-5 consists of three convolution layers 

and two sub-sampling layers for the feature extraction process of 

an input image and two fully-connected layers for the 

classification process. 

2.1 Convolution layer 

 

The convolution layer is the core operation in the CNN 

architecture to extract features such as edges and lines of an input 

image [13]. Figure 2 shows the process of a convolution layer. 

First, a convolution kernel is convolved with an input feature map 

as it moves over the input image with a stride. Next, weighted 

results are added with a bias. Finally, an activation function such 

as sigmoid, tanh or ReLU is applied to the accumulated values to 

determine the output feature map. If the convolution of an m× m 

convolution kernel and an N× N input feature map is conducted 

with the stride of 1, an (N-m+1)×(N-m+1) output feature map is 

generated. The process in the overall convolution layer may be 

summarized as (1). 

𝑂𝑡
(𝑥,𝑦)

=  𝑓( ∑ ∑ 𝑊𝑡
(𝑖,𝑗)

 ∙  𝐼(𝑥+𝑖,𝑦+𝑗) + 𝑏𝑖𝑎𝑠)                (1)

𝑚−1

𝑗=0

𝑚−1

𝑖=0

 

where a two-dimensional coordinate (x, y) indicates the position in 

the output feature map. I, O, and W indicate an input feature map, 

an output feature map, and a convolution kernel, respectively. 

Indices t, i, and j denote the convolution kernel type, the width 

index, and the height index, respectively. Finally, f denotes the 

activation function. For instance, if a 32×32 input feature map and 

6 types of 5×5 convolution kernels are used in convolution, 6 

types of 28×28 output feature maps are generated. 

2.2 Sub-sampling layer 
The sub-sampling layer reduces the size of feature maps from the 

previous convolution layer. The sub-sampling layer reduces 

computational complexity through image down-sampling while 

preserving features on images. Max-pooling, the method of 

choosing the largest value, is commonly used to deliver strong 

signals to the next layer. In addition, this layer is effective in 

preventing a problem known as overfitting. 

2.3 Fully-connected layer 
Following the feature extraction through convolution layers and 

sub-sampling layers, global features that can represent an input 

image are obtained. These features are given as inputs to the fully-

connected layer. Then, the fully-connected layer classifies an 

input image into a category of the highest probability based on the 

results of the feature extraction. 

3. SIMD IMPLEMENTATION OF LENET-5 

3.1 Single Instruction Multiple Data (SIMD) 
The SIMD unit is the implementation of the instruction set that 

operates on 1-D arrays called vectors. Vectors contain multiple 

data elements and the number of data elements per vector is 

typically called as vector length. Each data element is assigned to 

a processing element unit called lane. SIMD is capable of 

processing multiple data elements simultaneously through vector 

operations. Thus, SIMD takes advantage of data parallelism and it 

has been widely used in signal and image processing.  

Figure 3 shows the scalar operation (Figure 3 (a)) and the 

functionally equivalent SIMD operation of a vector with 4 lanes 

(Figure 3 (b)). The scalar operation is sequentially carried out with 

4 iterations, but the SIMD operation gets four results by 

performing only one parallel operation. 

Figure 2. The process of convolution layer performing 2D 

convolution 

Figure 1. The architecture of LeNet-5 



 

3.2 NEON 

 

NEON is an advanced SIMD architecture extension for ARM 

processors. The NEON unit has independent pipelines and a 

register bank that is separate from the ARM core register bank. 

Registers store vectors with elements of the same data type. Data 

types are 8-bit, 16-bit, 32-bit, 64-bit, and 128-bit of 

signed/unsigned fixed-point and single precision floating-point 

types. The vector register of the NEON unit has 16 128-bit quad 

word (Q) registers (Q0-Q15) and 32 64-bit double word (D) 

registers (D0-D31). A Q register is composed of two consecutive D 

registers [11]. Figure 4 shows the number of lanes available for 

each data type in a Q register. For example, the 8-bit fixed-point 

type of data elements is used, the total of 16 lanes can be used in a 

vector. 

3.3 Data Reshaping in Depth Directional 

Method 
There are two types of convolution kernels in LeNet-5. N types of 

2D convolution kernels (H× W) are used in C1, and N types of 3D 

convolution kernels (D× H× W) are used in C2 and C3 where N, D, 

H, and W denote the convolution kernel type, the kernel depth, the 

kernel height, and the kernel width, respectively.  

 

Figure 5 shows the shape of convolution kernels in LeNet-5. The 

sets of the convolution kernels in C1, C2, and C3 are 6 types of 

5×5 kernels (Figure 5 (a)), 16 types of 6×5×5 kernels (Figure 5 

(b)), and 120 types of 16×5×5 kernels (Figure 5 (c)), respectively. 

As mentioned earlier, to fully utilize vector lanes in the SIMD unit, 

a method called Depth-Directional Method to vectorize 

convolution kernels in the depth direction is proposed in this 

paper. To vectorize the convolution kernel in the depth direction, 

data reshaping is performed conforming to the way of the load 

instruction in the NEON instruction set. When the load instruction 

is executed, it fetches a bundle of data of the same size as the 

vector length. In other words, if the vector length is larger than the 

number of elements in a convolution kernel row, the extra lanes 

are not used. We call such lane as idle lane. When loading 

convolution kernels into vector registers, if one row of the 

convolution kernel is loaded at a time in C1, only 5 lanes will be 

used, and the rest of the lanes will become idle lanes. On the other 

hand, when we reshape the data in the proposed DDM, 6 lanes 

will be used resulting in one less idle lane. Therefore, more lanes 

can be utilized by vectorizing the reshaped convolution kernel 

than the original convolution kernel. 

Figure 5 shows the shape of convolution kernels in LeNet-5. In 

2D convolution kernels, the kernel vector size will be W, and 

therefore, the number of kernel vectors is N×H. Also, in 3D 

convolution kernels, the kernel vector size will be W, and the 

number of kernel vectors will be N×D×H. 

After the kernel is reshaped, the kernel vector size will be N, and 

the number of kernel vectors will become W×H in 2D convolution 

kernels, and the kernel vector size will be D and the number 

kernel vectors will be N×W×H in 3D convolution kernels.  

Figure 6 shows the reshaped convolution kernel of each 

convolution layer. In the 2D convolution kernel of C1 (Figure 6 

(a)), N is regarded as the depth. Therefore, the convolution kernels 

in the shape of 6×5×5 are reshaped to those of 5×5×6. In the 3D 

convolution kernels of C2 and C3, the convolution kernels in the 

shape of 16 types of 6×5×5 and 120 types of 16×5×5 is reshaped 

to those of 16 types of 5×5×6 and those of 120 types 5×5×16 as 

shown in Figure 6 (b) and Figure 6 (c), respectively.  

 

In the proposed implementation, the data type of weights and 

input features is 16-bit fixed-point representation, and therefore, 

the number of lanes will be 8 because each Q vector register has 

128 bits as shown in Figure 4. In C1, the number of lanes used per 

vector is increased from 5 to 6 in DDM. In C2, the number of the 

convolution kernel types is 16, and thus, the number of idle lanes 

will increase by 16 times compared to C1. In C3, as the number of 

lanes used per vector is 8, in DDM, all the lanes are used without 

any idle lanes. 

Figure 7 shows how lanes are utilized in the conventional method 

and DDM. In C1, the number of idle lanes per vector is 3 in the 

conventional method, and 2 in DDM. Correspondingly, the 

number of vectors will be 30 and 25 vectors in the conventional 

method and DDM, respectively. Therefore, the total number of 

idle lanes is 90 and 50 in the conventional method and DDM, 

Figure 3. Comparison between scalar operation and 

SIMD operation 

Figure 4. Data type of Q register 

Figure 5. The shape of convolution kernels in (a) C1, (b) 

C2, and (c) C3 

Figure 6. Reshaped convolution kernels in (a) C1, (b) C2, 

and (c) C3 



respectively. Figure 8 shows how lanes are utilized in the 

conventional method and DDM for C3. In the reshaped kernel, the 

vector size is 16, and therefore, as shown in Figure 8 (b), two 

vector registers are used per a row. Therefore, the number of 

vectors will be N×W×H×2, and all lanes are fully utilized without 

any idle lanes. Table 1 summarizes the comparison of the 

utilization of SIMD lanes in each convolution layer. 

 

 

 

 

 

 

 

 

Table 1. The utilization of SIMD lanes comparison in 

conventional and depth directional method 

 Conventional       

Method 

Depth Directional 

Method 

Layer 

Type 

idle lanes 

per vector 

the number 

of vectors 

idle lanes 

per vector 

the number 

of vectors 

C1 3 30 2 25 

C2 3 16×30 2 16×25 

C3 3 120×80 0 120×25×2 

4. EXPERIMENTS 

4.1 Experimental Setup 
To evaluate the performance of the proposed SIMD method, we 

use an embedded platform named Raspberry Pi 3 MODEL B 

which is equipped with a quad ARM Cortex-A53 core processor 

with a maximum clock speed of 1.2GHz and a 1GB LPDDR2 

RAM [14]. A NEON unit for advanced SIMD processing is 

integrated in each Cortex-A53 core.  

We compare the proposed DDM with other implementations in 

terms of execution time and power efficiency. First, three versions 

of implementations have been designed for single-core evaluation: 

a basic C code (BASIC), a NEON SIMD code with the 

conventional method (NEON), a NEON SIMD code with DDM 

(NEOND). In addition, three different implementations are 

designed for multi-core evaluation. The multi-core 

implementations are parallelized by OpenMP. OpenMP is an API 

for shared-memory parallel programming [15]. Compared multi-

core implementations are a C code parallelized with OpenMP 

(OMP), a NEON SIMD code with the conventional method and 

OpenMP (OMPc), a NEON SIMD code with DDM and OpenMP 

(OMPD).  

All implementations are experimented with the MNIST dataset. 

MNIST is a widely used handwritten dataset containing 28×28 

pixel images representing a single digit with the class labels from 

0 to 9. The dataset includes 60,000 training samples and 10,000 

testing samples [16]. In experiments, all weights and input 

features have the 16-bit fixed-point type. ReLU is used for the 

activation function. The execution time and the energy dissipation 

of the feature extraction during inference of 10,000 images have 

been measured. Energy dissipation of each implementation is 

measured by a pluggable power meter. 

4.2 Evaluation for Single-core Implementation 
Table 2 shows the comparison of execution time and energy 

dissipation between the proposed DDM (NEOND) and other 

implementations. NEOND shows the best execution time 

compared to other implementations. NEOND shows a speedup of 

up to 3.45 in C1 compared to BASIC. Table 3 shows relative 

performance and power dissipation ratios. For C1, NEOND is 41% 

faster than NEON, and for C2, 21% of speed improvement is 

achieved. For C3, NEOND is 50% faster than NEON.  

 

Figure 7. Utilization of SIMD lanes for C1 in (a) 

conventional method and (b) depth directional method 

Figure 8. Utilization of SIMD lanes for C3 in (a) 

conventional method and (b) depth directional method 



Table 2. Execution time and energy dissipation comparison 

for single-core 

 BASIC NEON NEOND 

Layer 

type 

Time 

(ms) 

Energy 

(J) 

Time 

(ms) 

Energy 

(J) 

Time 

(ms) 

Energy 

(J) 

C1 4380 110.39 1701 24.50 1107 11.96 

C2 8549 307.78 3071 55.29 2501 36.01 

C3 1647 11.86 673 4.85 467 1.69 

 

Table 3. Execution time and energy dissipation ratio for 

single-core 

 BASIC / NEOND NEON / NEOND 

Layer 

type 
Speed up 

Energy 

Dissipation 
Speed up 

Energy 

Dissipation 

C1 3.96 9.23 1.54 2.05 

C2 3.42 8.55 1.23 1.54 

C3 3.53 7.04 1.44 2.88 

4.3 Evaluation for Multi-core Implementation 
All multi-core implementations are parallelized with 4 threads. 

The iteration of each loop is divided into 4 groups and one group 

is assigned to each thread. Table 4 shows the comparison of 

execution time and energy dissipation with three implementations: 

OMP, OMPC, and OMPD. The proposed implementation, OMPD, 

shows the best performance and the lowest energy dissipation than 

the others. OMPD shows a speedup of up to 3.01 compared to 

OMP as shown in Table 5.  

These results confirm that the proposed depth directional method 

is an effective technique to improve not only the execution time 

but also the energy efficiency in both single and multi-core 

implementations. 

Table 4. Execution time and energy dissipation comparison 

for multi-core 

 OMP OMPC OMPD 

Layer 

type 

Time 

(ms) 

Energy 

(J) 

Time 

(ms) 

Energy 

(J) 

Time 

(ms) 

Energy 

(J) 

C1 1929 41.69 1261 18.16 474 5.12 

C2 3707 93.44 803 8.67 652 6.35 

C3 982 7.07 394 1.92 171 0.61 

 

Table 5. Execution time and energy dissipation ratio for multi-

core 

 OMP / OMPD OMPC / OMPD 

Layer 

type 
Speed up 

Energy 

Dissipation 
Speed up 

Energy 

Dissipation 

C1 4.07 8.14 2.66 3.55 

C2 5.69 14.72 1.23 1.37 

C3 5.74 11.52 2.30 3.12 

 

5. CONCLUSIONS 
Resource-constrained embedded platforms cannot afford to 

expensive accelerators. Therefore, it is important to accelerate 

CNN by only the CPU efficiently. In this paper, we propose a 

method to accelerate CNN by using the Single Instruction 

Multiple Data (SIMD) unit. To fully utilize the processing 

capability of the SIMD unit, we proposed a method called Depth 

Directional Method. Experimental results showed that the 

proposed method is superior to other conventional methods in all 

convolution layers. The multi-core implementation with the 

proposed method achieved a speedup of up to 13.11 in execution 

time and an improvement of up to 48.5 times in energy dissipation 

compared to the other conventional single-core implementations. 
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