
Efficient SIMD Implementation for Accelerating
Convolutional Neural Network

Sung-Jin Lee
Dept. of Electronics Engineering
Hangdang-dong, Seongdong-gu

Seoul, Korea
82-2-2220-4701

leesky601@hanyang.ac.kr

Sang-Soo Park
Dept. of Electronics Engineering
Hangdang-dong, Seongdong-gu

Seoul, Korea
82-2-2220-4701

po092000@hanyang.ac.kr

Ki-Seok Chung
Dept. of Electronics Engineering
Hangdang-dong, Seongdong-gu

Seoul, Korea
82-2-2220-4701

kchung@hanyang.ac.kr

ABSTRACT

Convolutional Neural Network (CNN) has been used in a variety

of fields such as computer vision, speech recognition, and natural

language processing. Because the amount of computation has

increased tremendously, CNN has lately been accelerated through

accelerators such as Graphic Processing Unit (GPU). However,

resource-constrained embedded platforms such as Internet of

Things (IoT) devices cannot afford to have such accelerators.

Therefore, it is important to accelerate CNN by only the CPU

efficiently. In this paper, we propose a method to accelerate CNN

by using the Single Instruction Multiple Data (SIMD) unit

integrated in many CPUs. Modern CPU includes a SIMD unit

which is commonly used for vector operations. The proposed

method implemented on an ARM’s NEON can maximize the

utilization of vector registers in the SIMD unit. Our proposed

implementation has achieved a speed-up of up to 2.66 in

execution time and an energy reduction of up to 3.55 times than

the conventional implementation.

CCS Concepts

•Computer systems organization➝Single instruction, multiple

data; Neural networks; Embedded systems.

Keywords

CNN; SIMD; NEON; LeNet-5; Parallel Processing; CPU

Acceleration; OpenMP;

1. INTRODUCTION
Convolutional Neural Network (CNN), a type of Artificial Neural

Network (ANN), is a neural network inspired by biological

organization of the human optic nerve. CNN has been used in a

variety of fields such as image, speech, and natural language

processing through excellent recognition capability [1-3].

The deeper the depth of layers gets, the higher CNN’s object-

recognition accuracy gets. Therefore, there are various attempts to

increase the number of layers. Correspondingly, the amount of

computation increases massively in order to achieve better

classification capability [4-5]. Therefore, CNN may have to

require high-performance processing units such as Graphics

Processing Units (GPU).

However, resource-constrained embedded platforms such as

Internet of Things (IoT) devices cannot afford to have such

accelerators because they operate with batteries with limited

driving capability. Therefore, it is important to accelerate CNN by

only the CPU efficiently.

Single Instruction Multiple Data (SIMD) units such as Intel AVX

[6] and ARM NEON [7] are commonly integrated in modern

Central Processing Units (CPUs), and they are utilized to

accelerate media and data streaming [8]. The SIMD unit is

capable of performing vector operations which carry out multiple

operations of a single type in parallel. It also specializes in

processing Multiply-Accumulate (MAC) operations because

MAC operations are heavily executed in image processing and

machine learning [9-10].

In this paper, we propose a technique to accelerate CNN with

SIMD processing units. A CNN called LeNet-5, which is widely

used in the Optical Character Recognition (OCR) field [11], is

accelerated by utilizing SIMD instructions in NEON, the SIMD

processing unit inside ARM CPUs. The NEON technology was

first introduced in the ARMv7 architecture and it has been

available with ARM Cortex-A class processors.

The SIMD lane is the space in which the data element is assigned

to a vector register. One data element is assigned to one SIMD

lane. When optimizing CNN with SIMD instructions in

conventional methods, the SIMD lanes are not efficiently utilized

because most convolution kernels have an odd size in both widths

and heights while the number of SIMD lanes in a vector register is

even. Therefore, we propose a method called Depth-Directional

Method (DDM) to vectorize convolution kernels in the depth

direction. In most CNN models, convolution kernels have an even

depth. In general, each convolution layer has distinct

characteristics. Therefore, in the proposed DDM, layer-specific

SIMD optimization methods are applied. As shown in Figure 1,

LeNet-5 consists of 3 convolution layers, 2 sub-sampling layers,

and 2 fully-connected layers. First, in Convolution Layer 1 (C1),

2D convolution kernels are used while in Convolution Layer 2

and 3 (C2 and C3), 3D convolution kernels are used. We propose

a method that minimizes the number of idle lanes to fully utilize

the SIMD processing units. The proposed DDM in LeNet-5

achieves a speed-up of 3.45 in C1, 2.97 in C2, 3.32 in C3 by

efficiently utilizing the SIMD resource.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. Copyrights

for components of this work owned by others than the author(s) must be
honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior

specific permission and/or a fee.
Request permissions from Permissions@acm.org.

ICCIP 2018, November 2–4, 2018, Qingdao, China

© 2018 Copyright is held by the owner/author(s). Publication rights
licensed to ACM.

ACM ISBN 978-1-4503-6534-5/18/11…$15.00

http://doi.org/10.1145/3290420.3290444

The rest of paper is organized as follows. Section 2 introduces

CNN and our target CNN model called LeNet-5. Section 3

presents an introduction of SIMD in NEON and describes the

proposed method. Section 4 shows our experiment results. Section

5 concludes this paper.

2. CONVOLUTIONAL NEURAL

NETWORK
CNN, which is specialized in computer vision, is a model that

mimics human vision processing. CNN is superior in image

recognition among deep running techniques. CNN has attracted a

lot of attention with overwhelming performance in image

recognition [12]. CNN typically consists of two processes, feature

extraction and classification. Feature extraction with convolutions

and sub-samplings is a process to extract features of an object

such as lines and edges. Classification with full-connections

selects an object of the most probable category based on the

extracted features. LeNet-5 consists of three convolution layers

and two sub-sampling layers for the feature extraction process of

an input image and two fully-connected layers for the

classification process.

2.1 Convolution layer

The convolution layer is the core operation in the CNN

architecture to extract features such as edges and lines of an input

image [13]. Figure 2 shows the process of a convolution layer.

First, a convolution kernel is convolved with an input feature map

as it moves over the input image with a stride. Next, weighted

results are added with a bias. Finally, an activation function such

as sigmoid, tanh or ReLU is applied to the accumulated values to

determine the output feature map. If the convolution of an m× m

convolution kernel and an N× N input feature map is conducted

with the stride of 1, an (N-m+1)×(N-m+1) output feature map is

generated. The process in the overall convolution layer may be

summarized as (1).

𝑂𝑡
(𝑥,𝑦)

= 𝑓(∑ ∑ 𝑊𝑡
(𝑖,𝑗)

 ∙ 𝐼(𝑥+𝑖,𝑦+𝑗) + 𝑏𝑖𝑎𝑠) (1)

𝑚−1

𝑗=0

𝑚−1

𝑖=0

where a two-dimensional coordinate (x, y) indicates the position in

the output feature map. I, O, and W indicate an input feature map,

an output feature map, and a convolution kernel, respectively.

Indices t, i, and j denote the convolution kernel type, the width

index, and the height index, respectively. Finally, f denotes the

activation function. For instance, if a 32×32 input feature map and

6 types of 5×5 convolution kernels are used in convolution, 6

types of 28×28 output feature maps are generated.

2.2 Sub-sampling layer
The sub-sampling layer reduces the size of feature maps from the

previous convolution layer. The sub-sampling layer reduces

computational complexity through image down-sampling while

preserving features on images. Max-pooling, the method of

choosing the largest value, is commonly used to deliver strong

signals to the next layer. In addition, this layer is effective in

preventing a problem known as overfitting.

2.3 Fully-connected layer
Following the feature extraction through convolution layers and

sub-sampling layers, global features that can represent an input

image are obtained. These features are given as inputs to the fully-

connected layer. Then, the fully-connected layer classifies an

input image into a category of the highest probability based on the

results of the feature extraction.

3. SIMD IMPLEMENTATION OF LENET-5

3.1 Single Instruction Multiple Data (SIMD)
The SIMD unit is the implementation of the instruction set that

operates on 1-D arrays called vectors. Vectors contain multiple

data elements and the number of data elements per vector is

typically called as vector length. Each data element is assigned to

a processing element unit called lane. SIMD is capable of

processing multiple data elements simultaneously through vector

operations. Thus, SIMD takes advantage of data parallelism and it

has been widely used in signal and image processing.

Figure 3 shows the scalar operation (Figure 3 (a)) and the

functionally equivalent SIMD operation of a vector with 4 lanes

(Figure 3 (b)). The scalar operation is sequentially carried out with

4 iterations, but the SIMD operation gets four results by

performing only one parallel operation.

Figure 2. The process of convolution layer performing 2D

convolution

Figure 1. The architecture of LeNet-5

3.2 NEON

NEON is an advanced SIMD architecture extension for ARM

processors. The NEON unit has independent pipelines and a

register bank that is separate from the ARM core register bank.

Registers store vectors with elements of the same data type. Data

types are 8-bit, 16-bit, 32-bit, 64-bit, and 128-bit of

signed/unsigned fixed-point and single precision floating-point

types. The vector register of the NEON unit has 16 128-bit quad

word (Q) registers (Q0-Q15) and 32 64-bit double word (D)

registers (D0-D31). A Q register is composed of two consecutive D

registers [11]. Figure 4 shows the number of lanes available for

each data type in a Q register. For example, the 8-bit fixed-point

type of data elements is used, the total of 16 lanes can be used in a

vector.

3.3 Data Reshaping in Depth Directional

Method
There are two types of convolution kernels in LeNet-5. N types of

2D convolution kernels (H× W) are used in C1, and N types of 3D

convolution kernels (D× H× W) are used in C2 and C3 where N, D,

H, and W denote the convolution kernel type, the kernel depth, the

kernel height, and the kernel width, respectively.

Figure 5 shows the shape of convolution kernels in LeNet-5. The

sets of the convolution kernels in C1, C2, and C3 are 6 types of

5×5 kernels (Figure 5 (a)), 16 types of 6×5×5 kernels (Figure 5

(b)), and 120 types of 16×5×5 kernels (Figure 5 (c)), respectively.

As mentioned earlier, to fully utilize vector lanes in the SIMD unit,

a method called Depth-Directional Method to vectorize

convolution kernels in the depth direction is proposed in this

paper. To vectorize the convolution kernel in the depth direction,

data reshaping is performed conforming to the way of the load

instruction in the NEON instruction set. When the load instruction

is executed, it fetches a bundle of data of the same size as the

vector length. In other words, if the vector length is larger than the

number of elements in a convolution kernel row, the extra lanes

are not used. We call such lane as idle lane. When loading

convolution kernels into vector registers, if one row of the

convolution kernel is loaded at a time in C1, only 5 lanes will be

used, and the rest of the lanes will become idle lanes. On the other

hand, when we reshape the data in the proposed DDM, 6 lanes

will be used resulting in one less idle lane. Therefore, more lanes

can be utilized by vectorizing the reshaped convolution kernel

than the original convolution kernel.

Figure 5 shows the shape of convolution kernels in LeNet-5. In

2D convolution kernels, the kernel vector size will be W, and

therefore, the number of kernel vectors is N×H. Also, in 3D

convolution kernels, the kernel vector size will be W, and the

number of kernel vectors will be N×D×H.

After the kernel is reshaped, the kernel vector size will be N, and

the number of kernel vectors will become W×H in 2D convolution

kernels, and the kernel vector size will be D and the number

kernel vectors will be N×W×H in 3D convolution kernels.

Figure 6 shows the reshaped convolution kernel of each

convolution layer. In the 2D convolution kernel of C1 (Figure 6

(a)), N is regarded as the depth. Therefore, the convolution kernels

in the shape of 6×5×5 are reshaped to those of 5×5×6. In the 3D

convolution kernels of C2 and C3, the convolution kernels in the

shape of 16 types of 6×5×5 and 120 types of 16×5×5 is reshaped

to those of 16 types of 5×5×6 and those of 120 types 5×5×16 as

shown in Figure 6 (b) and Figure 6 (c), respectively.

In the proposed implementation, the data type of weights and

input features is 16-bit fixed-point representation, and therefore,

the number of lanes will be 8 because each Q vector register has

128 bits as shown in Figure 4. In C1, the number of lanes used per

vector is increased from 5 to 6 in DDM. In C2, the number of the

convolution kernel types is 16, and thus, the number of idle lanes

will increase by 16 times compared to C1. In C3, as the number of

lanes used per vector is 8, in DDM, all the lanes are used without

any idle lanes.

Figure 7 shows how lanes are utilized in the conventional method

and DDM. In C1, the number of idle lanes per vector is 3 in the

conventional method, and 2 in DDM. Correspondingly, the

number of vectors will be 30 and 25 vectors in the conventional

method and DDM, respectively. Therefore, the total number of

idle lanes is 90 and 50 in the conventional method and DDM,

Figure 3. Comparison between scalar operation and

SIMD operation

Figure 4. Data type of Q register

Figure 5. The shape of convolution kernels in (a) C1, (b)

C2, and (c) C3

Figure 6. Reshaped convolution kernels in (a) C1, (b) C2,

and (c) C3

respectively. Figure 8 shows how lanes are utilized in the

conventional method and DDM for C3. In the reshaped kernel, the

vector size is 16, and therefore, as shown in Figure 8 (b), two

vector registers are used per a row. Therefore, the number of

vectors will be N×W×H×2, and all lanes are fully utilized without

any idle lanes. Table 1 summarizes the comparison of the

utilization of SIMD lanes in each convolution layer.

Table 1. The utilization of SIMD lanes comparison in

conventional and depth directional method

 Conventional

Method

Depth Directional

Method

Layer

Type

idle lanes

per vector

the number

of vectors

idle lanes

per vector

the number

of vectors

C1 3 30 2 25

C2 3 16×30 2 16×25

C3 3 120×80 0 120×25×2

4. EXPERIMENTS

4.1 Experimental Setup
To evaluate the performance of the proposed SIMD method, we

use an embedded platform named Raspberry Pi 3 MODEL B

which is equipped with a quad ARM Cortex-A53 core processor

with a maximum clock speed of 1.2GHz and a 1GB LPDDR2

RAM [14]. A NEON unit for advanced SIMD processing is

integrated in each Cortex-A53 core.

We compare the proposed DDM with other implementations in

terms of execution time and power efficiency. First, three versions

of implementations have been designed for single-core evaluation:

a basic C code (BASIC), a NEON SIMD code with the

conventional method (NEON), a NEON SIMD code with DDM

(NEOND). In addition, three different implementations are

designed for multi-core evaluation. The multi-core

implementations are parallelized by OpenMP. OpenMP is an API

for shared-memory parallel programming [15]. Compared multi-

core implementations are a C code parallelized with OpenMP

(OMP), a NEON SIMD code with the conventional method and

OpenMP (OMPc), a NEON SIMD code with DDM and OpenMP

(OMPD).

All implementations are experimented with the MNIST dataset.

MNIST is a widely used handwritten dataset containing 28×28

pixel images representing a single digit with the class labels from

0 to 9. The dataset includes 60,000 training samples and 10,000

testing samples [16]. In experiments, all weights and input

features have the 16-bit fixed-point type. ReLU is used for the

activation function. The execution time and the energy dissipation

of the feature extraction during inference of 10,000 images have

been measured. Energy dissipation of each implementation is

measured by a pluggable power meter.

4.2 Evaluation for Single-core Implementation
Table 2 shows the comparison of execution time and energy

dissipation between the proposed DDM (NEOND) and other

implementations. NEOND shows the best execution time

compared to other implementations. NEOND shows a speedup of

up to 3.45 in C1 compared to BASIC. Table 3 shows relative

performance and power dissipation ratios. For C1, NEOND is 41%

faster than NEON, and for C2, 21% of speed improvement is

achieved. For C3, NEOND is 50% faster than NEON.

Figure 7. Utilization of SIMD lanes for C1 in (a)

conventional method and (b) depth directional method

Figure 8. Utilization of SIMD lanes for C3 in (a)

conventional method and (b) depth directional method

Table 2. Execution time and energy dissipation comparison

for single-core

 BASIC NEON NEOND

Layer

type

Time

(ms)

Energy

(J)

Time

(ms)

Energy

(J)

Time

(ms)

Energy

(J)

C1 4380 110.39 1701 24.50 1107 11.96

C2 8549 307.78 3071 55.29 2501 36.01

C3 1647 11.86 673 4.85 467 1.69

Table 3. Execution time and energy dissipation ratio for

single-core

 BASIC / NEOND NEON / NEOND

Layer

type
Speed up

Energy

Dissipation
Speed up

Energy

Dissipation

C1 3.96 9.23 1.54 2.05

C2 3.42 8.55 1.23 1.54

C3 3.53 7.04 1.44 2.88

4.3 Evaluation for Multi-core Implementation
All multi-core implementations are parallelized with 4 threads.

The iteration of each loop is divided into 4 groups and one group

is assigned to each thread. Table 4 shows the comparison of

execution time and energy dissipation with three implementations:

OMP, OMPC, and OMPD. The proposed implementation, OMPD,

shows the best performance and the lowest energy dissipation than

the others. OMPD shows a speedup of up to 3.01 compared to

OMP as shown in Table 5.

These results confirm that the proposed depth directional method

is an effective technique to improve not only the execution time

but also the energy efficiency in both single and multi-core

implementations.

Table 4. Execution time and energy dissipation comparison

for multi-core

 OMP OMPC OMPD

Layer

type

Time

(ms)

Energy

(J)

Time

(ms)

Energy

(J)

Time

(ms)

Energy

(J)

C1 1929 41.69 1261 18.16 474 5.12

C2 3707 93.44 803 8.67 652 6.35

C3 982 7.07 394 1.92 171 0.61

Table 5. Execution time and energy dissipation ratio for multi-

core

 OMP / OMPD OMPC / OMPD

Layer

type
Speed up

Energy

Dissipation
Speed up

Energy

Dissipation

C1 4.07 8.14 2.66 3.55

C2 5.69 14.72 1.23 1.37

C3 5.74 11.52 2.30 3.12

5. CONCLUSIONS
Resource-constrained embedded platforms cannot afford to

expensive accelerators. Therefore, it is important to accelerate

CNN by only the CPU efficiently. In this paper, we propose a

method to accelerate CNN by using the Single Instruction

Multiple Data (SIMD) unit. To fully utilize the processing

capability of the SIMD unit, we proposed a method called Depth

Directional Method. Experimental results showed that the

proposed method is superior to other conventional methods in all

convolution layers. The multi-core implementation with the

proposed method achieved a speedup of up to 13.11 in execution

time and an improvement of up to 48.5 times in energy dissipation

compared to the other conventional single-core implementations.

6. ACKNOWLEDGMENTS
This research was supported by Basic Science Research Program

through the National Research Foundation of Korea(NRF) funded

by the Ministry of Education(NRF2015R1D1A1A09061079).

7. REFERENCES
[1] Simard, P. Y., Steinkraus, D., and Platt, J. C. 2003. Best

Practices for Convolutional Neural Networks Applied to
Visual Document Analysis. In Proceedings of the Seventh
International Conference on Document Analysis and
Recognition, 2 (ICDAR '03). IEEE Computer Society,
Washington, DC, USA, 958-. DOI=http://dx.doi.org/
10.1109/ICDAR.2003.1227801.

[2] Abdel-Hamid, O., Mohamed, A., Jiang, H., Deng, L., Penn,
G., and Yu, D. 2014. Convolutional Neural Networks for
Speech Recognition. IEEE/ACM Trans. Audio, Speech and
Lang. Proc. 22, 10 (Oct. 2014), 1533-1545.
DOI=http://dx.doi.org/10.1109/TASLP.2014.2339736.

[3] Collobert, R. and Weston, J. 2008. A unified architecture for
natural language processing: deep neural networks with
multitask learning. In Proceedings of the 25th international
conference on Machine learning (ICML '08). ACM, New
York, NY, USA, 160-167.
DOI=http://dx.doi.org/10.1145/1390156.1390177.

[4] Liu, S. and Deng, W. 2015. Very deep convolutional neural
network based image classification using small training
sample size. In Proceedings of 3rd IAPR Asian Conference
on Pattern Recognition (ACPR), 730-734.
DOI=http://dx.doi.org/10.1109/ACPR.2015.7486599.

[5] He, K., Zhang, X., Ren, S., and Sun, J. 2016. Deep Residual
Learning for Image Recognition, In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition
(CVPR), 770-778. DOI=http://dx.doi.org/
10.1109/CVPR.2016.90.

[6] Lomont, C. 2011. Introduction to Intel Advanced Vector
Extensions. Intel White Paper.

[7] ARM. Architecture support for NEON and VFP.
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc
.dui0204j/CJAJBFBF.html/

[8] Michael, J. F. 1966. Very high-speed computing systems. In
Proceedings of the IEEE. 54, 1901-1909.
DOI=http://dx.doi.org/10.1109/PROC.1966.5273.

[9] Siegel, H. J., Siegel, L. J., Kemmerer, F. C., PT Jr, M., HE Jr,
S., and Smith, S. D. 1981. PASM: A partitionable
SIMD/MIMD system for image processing and pattern
recognition. IEEE Transactions on computers, 30, 12 (Dec.
1981), 934-947. DOI=http://dx.doi.org/
10.1109/TC.1981.1675732.

http://dx.doi.org/%2010.1109/ICDAR.2003.1227801
http://dx.doi.org/%2010.1109/ICDAR.2003.1227801
http://dx.doi.org/10.1109/TASLP.2014.2339736
http://dx.doi.org/10.1145/1390156.1390177
https://doi.org/10.1109/ACPR.2015.7486599
http://dx.doi.org/%2010.1109/CVPR.2016.90
http://dx.doi.org/%2010.1109/CVPR.2016.90
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.dui0204j/CJAJBFBF.html/
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.dui0204j/CJAJBFBF.html/
http://dx.doi.org/10.1109/PROC.1966.5273
http://dx.doi.org/%2010.1109/TC.1981.1675732
http://dx.doi.org/%2010.1109/TC.1981.1675732

[10] Lai, L., Suda, N., and Chandra, V. 2018. CMSIS-NN:
Efficient Neural Network Kernels for Arm Cortex-M
CPUs. arXiv preprint arXiv:1801.06601.

[11] LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. 1998.
Gradient-based learning applied to document recognition. In
Proceedings of the IEEE, 86, 11 (Nov 1998), 2278-2324.
DOI=http://dx.doi.org/10.1109/5.726791.

[12] Krizhevsky, A., Sutskever, I., and Hinton, G. E. 2017.
ImageNet classification with deep convolutional neural
networks. Commun. ACM 60, 6 (May 2017), 84-90. DOI:
https://doi.org/10.1145/3065386.

[13] Chen, L. C., Barron, J. T., Papandreou, G., Murphy, K., &
Yuille, A. L. 2016. Semantic image segmentation with task-

specific edge detection using cnns and a discriminatively
trained domain transform. In Proceedings of the IEEE
Conference on Computer Vision and Pattern
Recognition (CVPR), 4545-4554. DOI=http://dx.doi.org/
10.1109/CVPR.2016.492.

[14] Raspberry PI Foundation. RASPBERRY PI 3 MODEL B.
https://www.raspberrypi.org/products/raspberry-pi-3-model-
b 2016/

[15] OpenMP. OpenMP Specifications.
http://www.openmp.org/specifications.

[16] LeCun, Y., Cortes, C., Burges, C. J. 2010. MNIST
handwritten digit database. AT&T Labs.
http://yann.lecun.com/exdb/mnist.

http://dx.doi.org/10.1109/5.726791
https://doi.org/10.1145/3065386
http://dx.doi.org/%2010.1109/CVPR.2016.492
http://dx.doi.org/%2010.1109/CVPR.2016.492
https://www.raspberrypi.org/products/raspberry-pi-3-model-b%202016/
https://www.raspberrypi.org/products/raspberry-pi-3-model-b%202016/
http://www.openmp.org/specifications
http://yann.lecun.com/exdb/mnist

