
Image Blending Techniques Based on GPU Acceleration
Jung Soo Kim

Department of Electronics and
Computer Engineering

Hanyang University
Seoul, Korea

+82 2-2220-4701

jungsookim4080@gmail.com

Min-Kyu Lee
Department of Electronics and

Computer Engineering
Hanyang University

Seoul, Korea
+82 2-2220-4701

hanlovelan@hanyang.ac.kr

Ki-Seok Chung*
Department of Electronics and

Computer Engineering
Hanyang University

Seoul, Korea
+82 2-2220-4701

kchung@hanyang.ac.kr

ABSTRACT

Today, image blending has been used for a high-resolution image

in medical, aerospace, and even defense areas. To blend images,

several filters and various processing steps such as Gaussian

pyramid, Laplacian pyramid, and multi-band computation will be

needed. However, these computations consist of a large amount of

arithmetic operations. As the processing capability of graphic

processing units (GPUs) grows very rapidly, GPUs have

commonly been used to supplement central processing units

(CPUs) for high-performance computing. By employing hardware

accelerators such as GPU, a significant speedup can be achieved.

In this paper, we present an implementation of fast image

blending methods using compute unified device architecture

(CUDA). The proposed implementation utilizes a shared memory

in GPU better than conventional implementations leading to a

better speed-up. The proposed implementation of this paper shows

an improvement of 3.9 times in the overall execution time

compared to a conventional implementation.

CCS Concepts

• Computing methodologies➝Computer graphics➝Image

Manipulation➝Image processing.

Keywords
Image blending; GPGPU; CUDA; padding; shared memory;

image pyramid; multi-resolution spline; multi-band blending.

1. INTRODUCTION
Image blending is a technique to combine several images in order

to form a single output image. In the past, image blending had

been adopted to combine only the images. Since multi-band

blending [1-3], which is also known as multi-resolution spline,

was introduced, image blending is used not only to blend images

but also to correct and calibrate images from different sensors to

make a natural conjunction between images at the joints. Because

of these reasons, multi-band blending has often been adopted in a

variety of computer vision areas such as medical and aerospace

applications.

It is strongly required for processors to have a high processing

capability to satisfy the growing need for processing a large

amount of data. For CPUs, the processing power is improved

mainly either by increasing the clock frequency or by increasing

the number of cores. However, neither one will achieve a

groundbreaking performance improvement. Thus, it is necessary a

new processor architecture to achieve a much better performance.

One of the widely adopted methods to overcome the CPU’s

limitation is to employ General-Purpose Graphics Processing Unit

(GPGPU) [4]. GPU had been mainly developed to speed up only

the graphic processing. However, due to its relatively regular

hardware architecture, the number of cores in a GPU has

increased tremendously. When the GPU executes massively data-

parallel applications, thousands of threads can be executed in

parallel resulting in an excellent speed-up in many data-parallel

applications over the CPU. Therefore, more and more application

areas find it very advantageous to employ GPUs to achieve

performance improvement. Compute unified device architecture

(CUDA) is a parallel programming framework and an application

programming interface (API) model provided by NVIDIA. It

allows software developers to use a CUDA-enabled GPU for

general purpose processing [5].

The higher the required resolution gets, or the more images the

image blender has to take care of, the more critical the

computational capability becomes. In this paper, to guarantee

sufficient processing power, the CUDA framework is employed

for image blending.

To maximize the performance improvement by utilizing the GPU,

we have attempted two implementations: computation without a

shared memory and that with a shared memory option [6]. It is to

show that it is very advantageous to utilize the shared memory

option to get better performance. Without the shared memory

option, each thread must copy the data from a global memory

called Graphics DDR SDRAM (GDDR) to cores directly. On the

other hand, with the shared memory option, data is copied from

the global memory to the shared memory so that it should be

possible that threads in the same block can share the copied data.

In this paper, we show how the shared memory option should be

utilized to reduce the memory loading time. This is the main

contribution of this paper.

The rest of this paper is organized as follows. We will introduce

previous studies on the image blending in Section 2 and the

CUDA computing framework in Section 3. We propose our

proposed implementation of the image blending in Section 4. Next,

we will show experimental results and evaluate the proposed

scheme in terms of execution time in Section 5. Finally, we

conclude our work in Section 6.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than ACM must be

honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee. Request permissions from

Permissions@acm.org.

ICIGP 2018, February 24–26, 2018, Hong Kong, Hong Kong
© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-6367-9/18/02…$15.00

https://doi.org/10.1145/3191442.3191471

106

Figure 1. The steps of multi-band blending.

2. IMAGE BLENDING

2.1 Naïve Image Blending
Image blending is a process of merging multiple images to form

one natural image seamlessly. A blending scheme called “average

blending” was used because of blending speed and simplicity. The

average blending makes output pixels using the average pixel

value that is computed between images that follow seams.

Unfortunately, it would make the blended image blurry or leave

boundary lines. Therefore, a new blending method called

“multiband blending” has been employed commonly, and the

details will be addressed in the following subsection.

2.2 Multiband Image Blending
The multiband blending is capable of blending low frequency

components of the images while preserving the details of high

frequencies. Thereby, it smoothens an image in the low-frequency

band and sharpens an image in the high-frequency band.

It consists of several steps as shown in Figure 1 [1, 2]. To make a

blended image, steps such as building image pyramids, blending

computation and reconstruction should be carried out. Because

many steps are computationally intensive, it is crucial to optimize

the implementation in terms of performance, accuracy, and power

consumption in each step.

The first step in image blending is building image pyramids of all

images. This step takes a considerably large amount of execution

time. It is mainly composed of two parts, a low-pass pyramid and

a band-pass pyramid. A low-pass pyramid is to make an image

using a smoothing filter and then to carry out subsampling by a

factor of 2. Every cycle of this process results in a smoothing-

filtered image of the original image. The size of the output image

is a quarter of that of the original image. A band-pass pyramid is

to make an image using the difference between images of adjacent

levels in the pyramid and then to carry out the interpolation to

raise the resolution to the next level. In this paper, we adopted the

Gaussian pyramid as the low-pass pyramid that has a weight 5-by-

5 Gaussian filter and the Laplacian pyramid as the band-pass

pyramid.

The second step in image blending is to compute an output pixel

and then to map the computed pixels to an output image. In this

step, the differences between Laplacian pyramids of each image

are computed. Output pixels are computed using the difference of

Laplacian pyramids multiplied by a mask. Then, we used

accumulation pixels of adjacent levels in the pyramid while

interpolating between a high-level image and a low-level one in

the pyramid.

3. GPGPU AND CUDA
A GPU is a specialized device for graphic processing such as
creating output images to display. It typically specializes in
processing only for computer graphics. However, a GPU device
has evolved to a more flexible architecture so that it can carry out
not only graphics processing but also computations in applications
that are conventionally handled by the CPU. Commonly, such
GPU is called as GPGPU. GPGPU consists of many multithreaded
SIMD processors called scalar processor (SP). SPs have many
lanes per processor. GPU generates a huge number of threads that
can be executed in parallel so that a significant speed-up should be
achieved as long as a large number of cores are efficiently utilized
[4].

Figure 2. GPGPU architecture and CUDA computing strategy.

CUDA is a parallel computing platform and an application
programming interface (API) model to support software
development for GPGPU. It comes with software development
environment that allows developers to use C as a high-level
programming language. In addition, executing a large number of
parallel threads implies that a large amount of data would be
needed. Correspondingly, it is very important how the memory

107

system is organized in GPU. There are several memory hierarchies
such as global, shared, and constant memory as shown in Figure 2.
The global memory is the memory known as GDDR. The shared
memory is slow, but it can be shared among all threads in the same
block that is typically called as streaming multiprocessor (SM).
Using the shared memory would be advantageous in terms of
performance, because it reduces memory accesses to the global
memory. In this paper, we focus on using the shared memory to
improve performance in image blending [4, 6].

4. PADDED IMAGE BLENDING BASED

ON GPU

Figure 3. Zero-padding for image blending with shared

memory.

Building Gaussian and Laplacian pyramids, computing

differences of the Laplacian pyramid, and reconstruction are

matrix convolutions. The basic approach is to compute those

operations in parallel on GPU using CUDA. Clearly, CUDA

implementation shows a large improvement, compared to

implementation only on CPU.

Using the shared memory would lead to further performance

improvement. However, there is a limitation to use the shared

memory when images have variable resolutions. To utilize the

shared memory option effectively, the thread block size and the

memory size should be fixed regardless of the image size. For

images with variable resolutions, therefore, additional method to

resolve this concern would be needed.

In order to resolve this issue, we propose a novel image blending

method called “padded image blending” where sides of the input

image are selectively padded with zeros to make the size of input

images to be uniform. The uniform size is determined to be a

number that corresponds to a multiple of the maximum thread

block size. Zero-padding performs no computationally meaningful

work because any computations with the edge that is padded do

not influence on the output image. However, by inserting the

padding, it is possible to make the thread block and the shared

memory size to be equal regardless of the size of input images.

Thus, image blending can be parallelized efficiently using the

shared memory on GPU with the same number of threads. The

proposed method is shown in Figure 3. In this proposed method,

input images are divided into the equally sized blocks and then

they are mapped to the shared memory.

5. EXPERIMENT AND DISCUSSION

5.1 Experimental Setup
The target platform consists of i7-3770K CPU and GeForce GTX
1060 GPU. CPU and GPU are externally linked through the PCI
Express (PCIe) bus. Intel i7-3770K is a quad-core CPU and
NVIDIA GeForce GTX 1060 consists of 1152 cores that are
composed of 9 SMs by 128 SPs with a 3GB GDDR memory. The
host program was compiled using Microsoft Visual Studio 2015
and CUDA 8.0 library. The detailed platform specification is
summarized in Table 1.

To evaluate the performance of the proposed method, two input
images with 2448*3264 high-resolution shown in Figure 4 and
Figure 5 were used.

Table 1. The specification of target platform

Processor Type CPU GPU

Processor Architecture Intel i7-3770K
NVIDIA GeForce

GTX 1060 3GB

Processor Clock 3.5 GHz 1.71 GHz

of Core 4
9 (SM)

128 (SP)

 Performance

(GFLOPS)
18 3,935

Memory Size 10 GB 3 GB

Floating Point Single Precision (32bit)

Operating System Windows 10 Education 64bit

Library CUDA 8.0

5.2 Experimental Results
Table 2 shows comparison results of the execution time between

the CPU-only implementation and one with the GPU acceleration

without the shard memory utilization, and Figure 4 shows the

output image. Table 3 shows comparison results of the execution

time between the CPU-only implementation and the GPU

acceleration with the shared memory using CUDA after zero-

padding. Figure 5 shows the output image.

Figure 4. Blended image of CPU-only implementation and

with the GPU acceleration w/o shared memory.

108

Table 2. The execution time of image blending using CPU and

GPU (2448*3264, 16 images).

CPU GPU speedup

Gaussian Pyramids 2.19 0.83 2.62

Laplacian Pyramids 4.82 1.66 2.90

Blending 0.52 0.51 1.01

Reconstruction 2.49 0.78 3.17

Total 10.04 3.80 2.64

Figure 5. Blended image of CPU-only implementation and

with the GPU acceleration with shared memory after zero-

padding.

Table 3. The execution time of image blending using CPU and

GPU with the shared memory (2448*3264, 16 images).

CPU

GPU

w/shared
speedup

Gaussian Pyramids 2.19 0.54 4.05

Laplacian Pyramids 4.82 1.01 4.76

Blending 0.52 0.52 1.00

Reconstruction 2.49 0.48 5.16

Total 10.04 2.56 3.92

As shown in Table 2, the execution time of image blending of the

CPU-only implementation is 10.04 sec while that of the GPU

execution is 3.80 sec, which means the execution time is

improved by more than twice.

As shown in Table 3, the execution time of image blending is 2.56

sec using GPU with the utilization of the shared memory. The

execution time is about four times faster than the CPU-only

implementation. Also, it is faster than the GPU implementation

without the shared memory. With the shared memory, threads that

belong to the same thread block have accesses to the shared

memory instead of the global memory. Thus, reduction of

memory accesses to the global memory has led to the performance

improvement.

In both experiments, the implementation using GPU is clearly

advantageous to image blending. Also, the implementation using

GPU with the shared memory option achieves a remarkable

performance improvement.

6. CONCLUSION
 Demands for high-resolution image processing techniques in

computer vision grow very rapidly as high-resolution devices such

as camera sensors become widely available. As the resolution

grows, the amount of computation in image processing rapidly

increases as well. In this paper, we have presented a novel image

blending method with GPU acceleration. We proposed a new

technique with zero-padding in order to utilize the shared memory

on GPU efficiently. The experimental results show that the

execution time of the proposed implementation is faster by 3.9

times than the CPU-only implementation. Thus, we conclude that

the implementation using GPU is very effective for image

blending.

7. ACKNOWLEDGMENTS
This work was supported by Institute for Information &

communications Technology Promotion (IITP) grant funded by

the Korea government (MSIP) (R7119-16-1009, Development of

Intelligent Semiconductor Core Technologies for IoT Devices

based on Harvest Energy).

8. REFERENCES
[1] Peter J. Burt and Edward H. Adelson. 1983. A

multiresolution spline with application to image mosaics.

ACM Trans. Graph. 2, 4 (October 1983), 217-236.

DOI=http://dx.doi.org/10.1145/245.247

[2] Matthew Brown and David G. Lowe. 2007. Automatic

Panoramic Image Stitching using Invariant Features. Int. J.

Comput. Vision 74, 1 (August 2007), 59-73.

DOI=http://dx.doi.org/10.1007/s11263-006-0002-3

[3] M. Brown and D. G. Lowe. 2003. Recognising Panoramas.

In Proceedings of the Ninth IEEE International Conference

on Computer Vision - Volume 2 (ICCV '03), Vol. 2. IEEE

Computer Society, Washington, DC, USA, 1218-.

[4] David B. Kirk, Wen-mei W. Hwu. 2016. Programming

massively parallel processors: a hands-on approach (3rd. ed.).

Morgan Kaufmann.

[5] Shane Ryoo, Christopher I. Rodrigues, Sara S. Baghsorkhi,

Sam S. Stone, David B. Kirk, and Wen-mei W. Hwu. 2008.

Optimization principles and application performance

evaluation of a multithreaded GPU using CUDA. In

Proceedings of the 13th ACM SIGPLAN Symposium on

Principles and practice of parallel programming (PPoPP '08).

ACM, New York, NY, USA, 73-82.

DOI=http://dx.doi.org/10.1145/1345206.1345220

[6] John Nickolls, Ian Buck, Michael Garland, and Kevin

Skadron. 2008. Scalable Parallel Programming with CUDA.

Queue 6, 2 (March 2008), 40-53. DOI:

https://doi.org/10.1145/1365490.1365500

 109

