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ABSTRACT 

Today, image blending has been used for a high-resolution image 

in medical, aerospace, and even defense areas. To blend images, 

several filters and various processing steps such as Gaussian 

pyramid, Laplacian pyramid, and multi-band computation will be 

needed. However, these computations consist of a large amount of 

arithmetic operations. As the processing capability of graphic 

processing units (GPUs) grows very rapidly, GPUs have 

commonly been used to supplement central processing units 

(CPUs) for high-performance computing. By employing hardware 

accelerators such as GPU, a significant speedup can be achieved. 

In this paper, we present an implementation of fast image 

blending methods using compute unified device architecture 

(CUDA). The proposed implementation utilizes a shared memory 

in GPU better than conventional implementations leading to a 

better speed-up. The proposed implementation of this paper shows 

an improvement of 3.9 times in the overall execution time 

compared to a conventional implementation. 

CCS Concepts 

• Computing methodologies➝Computer graphics➝Image 

Manipulation➝Image processing.  
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1. INTRODUCTION 
Image blending is a technique to combine several images in order 

to form a single output image. In the past, image blending had 

been adopted to combine only the images. Since multi-band 

blending [1-3], which is also known as multi-resolution spline, 

was introduced, image blending is used not only to blend images 

but also to correct and calibrate images from different sensors to 

make a natural conjunction between images at the joints. Because 

of these reasons, multi-band blending has often been adopted in a 

variety of computer vision areas such as medical and aerospace 

applications. 

It is strongly required for processors to have a high processing 

capability to satisfy the growing need for processing a large 

amount of data. For CPUs, the processing power is improved 

mainly either by increasing the clock frequency or by increasing 

the number of cores. However, neither one will achieve a 

groundbreaking performance improvement. Thus, it is necessary a 

new processor architecture to achieve a much better performance.  

One of the widely adopted methods to overcome the CPU’s 

limitation is to employ General-Purpose Graphics Processing Unit 

(GPGPU) [4]. GPU had been mainly developed to speed up only 

the graphic processing. However, due to its relatively regular 

hardware architecture, the number of cores in a GPU has 

increased tremendously. When the GPU executes massively data-

parallel applications, thousands of threads can be executed in 

parallel resulting in an excellent speed-up in many data-parallel 

applications over the CPU. Therefore, more and more application 

areas find it very advantageous to employ GPUs to achieve 

performance improvement. Compute unified device architecture 

(CUDA) is a parallel programming framework and an application 

programming interface (API) model provided by NVIDIA. It 

allows software developers to use a CUDA-enabled GPU for 

general purpose processing [5]. 

The higher the required resolution gets, or the more images the 

image blender has to take care of, the more critical the 

computational capability becomes. In this paper, to guarantee 

sufficient processing power, the CUDA framework is employed 

for image blending. 

To maximize the performance improvement by utilizing the GPU, 

we have attempted two implementations: computation without a 

shared memory and that with a shared memory option [6]. It is to 

show that it is very advantageous to utilize the shared memory 

option to get better performance. Without the shared memory 

option, each thread must copy the data from a global memory 

called Graphics DDR SDRAM (GDDR) to cores directly. On the 

other hand, with the shared memory option, data is copied from 

the global memory to the shared memory so that it should be 

possible that threads in the same block can share the copied data. 

In this paper, we show how the shared memory option should be 

utilized to reduce the memory loading time. This is the main 

contribution of this paper. 

The rest of this paper is organized as follows. We will introduce 

previous studies on the image blending in Section 2 and the 

CUDA computing framework in Section 3. We propose our 

proposed implementation of the image blending in Section 4. Next, 

we will show experimental results and evaluate the proposed 

scheme in terms of execution time in Section 5. Finally, we 

conclude our work in Section 6. 
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Figure 1. The steps of multi-band blending. 

2. IMAGE BLENDING  

2.1 Naïve Image Blending 
Image blending is a process of merging multiple images to form 

one natural image seamlessly. A blending scheme called “average 

blending” was used because of blending speed and simplicity. The 

average blending makes output pixels using the average pixel 

value that is computed between images that follow seams. 

Unfortunately, it would make the blended image blurry or leave 

boundary lines. Therefore, a new blending method called 

“multiband blending” has been employed commonly, and the 

details will be addressed in the following subsection.  

2.2 Multiband Image Blending 
The multiband blending is capable of blending low frequency 

components of the images while preserving the details of high 

frequencies. Thereby, it smoothens an image in the low-frequency 

band and sharpens an image in the high-frequency band.  

It consists of several steps as shown in Figure 1 [1, 2]. To make a 

blended image, steps such as building image pyramids, blending 

computation and reconstruction should be carried out. Because 

many steps are computationally intensive, it is crucial to optimize 

the implementation in terms of performance, accuracy, and power 

consumption in each step. 

The first step in image blending is building image pyramids of all 

images. This step takes a considerably large amount of execution 

time. It is mainly composed of two parts, a low-pass pyramid and 

a band-pass pyramid. A low-pass pyramid is to make an image 

using a smoothing filter and then to carry out subsampling by a 

factor of 2. Every cycle of this process results in a smoothing-

filtered image of the original image. The size of the output image 

is a quarter of that of the original image. A band-pass pyramid is 

to make an image using the difference between images of adjacent 

levels in the pyramid and then to carry out the interpolation to 

raise the resolution to the next level. In this paper, we adopted the 

Gaussian pyramid as the low-pass pyramid that has a weight 5-by-

5 Gaussian filter and the Laplacian pyramid as the band-pass 

pyramid. 

The second step in image blending is to compute an output pixel 

and then to map the computed pixels to an output image. In this 

step, the differences between Laplacian pyramids of each image 

are computed. Output pixels are computed using the difference of 

Laplacian pyramids multiplied by a mask. Then, we used 

accumulation pixels of adjacent levels in the pyramid while 

interpolating between a high-level image and a low-level one in 

the pyramid. 

3. GPGPU AND CUDA 
A GPU is a specialized device for graphic processing such as 
creating output images to display. It typically specializes in 
processing only for computer graphics. However, a GPU device 
has evolved to a more flexible architecture so that it can carry out 
not only graphics processing but also computations in applications 
that are conventionally handled by the CPU. Commonly, such 
GPU is called as GPGPU. GPGPU consists of many multithreaded 
SIMD processors called scalar processor (SP). SPs have many 
lanes per processor. GPU generates a huge number of threads that 
can be executed in parallel so that a significant speed-up should be 
achieved as long as a large number of cores are efficiently utilized 
[4].  

 

Figure 2. GPGPU architecture and CUDA computing strategy. 

CUDA is a parallel computing platform and an application 
programming interface (API) model to support software 
development for GPGPU. It comes with software development 
environment that allows developers to use C as a high-level 
programming language. In addition, executing a large number of 
parallel threads implies that a large amount of data would be 
needed. Correspondingly, it is very important how the memory 
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system is organized in GPU. There are several memory hierarchies 
such as global, shared, and constant memory as shown in Figure 2. 
The global memory is the memory known as GDDR. The shared 
memory is slow, but it can be shared among all threads in the same 
block that is typically called as streaming multiprocessor (SM). 
Using the shared memory would be advantageous in terms of 
performance, because it reduces memory accesses to the global 
memory. In this paper, we focus on using the shared memory to 
improve performance in image blending [4, 6]. 

4. PADDED IMAGE BLENDING BASED 

ON GPU 

 

Figure 3. Zero-padding for image blending with shared 

memory. 

Building Gaussian and Laplacian pyramids, computing 

differences of the Laplacian pyramid, and reconstruction are 

matrix convolutions. The basic approach is to compute those 

operations in parallel on GPU using CUDA. Clearly, CUDA 

implementation shows a large improvement, compared to 

implementation only on CPU. 

Using the shared memory would lead to further performance 

improvement. However, there is a limitation to use the shared 

memory when images have variable resolutions. To utilize the 

shared memory option effectively, the thread block size and the 

memory size should be fixed regardless of the image size. For 

images with variable resolutions, therefore, additional method to 

resolve this concern would be needed. 

In order to resolve this issue, we propose a novel image blending 

method called “padded image blending” where sides of the input 

image are selectively padded with zeros to make the size of input 

images to be uniform. The uniform size is determined to be a 

number that corresponds to a multiple of the maximum thread 

block size. Zero-padding performs no computationally meaningful 

work because any computations with the edge that is padded do 

not influence on the output image. However, by inserting the 

padding, it is possible to make the thread block and the shared 

memory size to be equal regardless of the size of input images. 

Thus, image blending can be parallelized efficiently using the 

shared memory on GPU with the same number of threads. The 

proposed method is shown in Figure 3. In this proposed method, 

input images are divided into the equally sized blocks and then 

they are mapped to the shared memory. 

5. EXPERIMENT AND DISCUSSION 

5.1 Experimental Setup 
The target platform consists of i7-3770K CPU and GeForce GTX 
1060 GPU. CPU and GPU are externally linked through the PCI 
Express (PCIe) bus. Intel i7-3770K is a quad-core CPU and 
NVIDIA GeForce GTX 1060 consists of 1152 cores that are 
composed of 9 SMs by 128 SPs with a 3GB GDDR memory. The 
host program was compiled using Microsoft Visual Studio 2015 
and CUDA 8.0 library. The detailed platform specification is 
summarized in Table 1. 

To evaluate the performance of the proposed method, two input 
images with 2448*3264 high-resolution shown in Figure 4 and 
Figure 5 were used. 

Table 1. The specification of target platform 

Processor Type CPU GPU 

Processor Architecture Intel i7-3770K  
NVIDIA GeForce  

GTX 1060 3GB 

Processor Clock 3.5 GHz 1.71 GHz 

# of Core 4 
9 (SM) 

128 (SP) 

 Performance 

(GFLOPS) 
18 3,935 

Memory Size 10 GB  3 GB 

Floating Point Single Precision (32bit) 

Operating System Windows 10 Education 64bit 

Library CUDA 8.0 

5.2 Experimental Results 
Table 2 shows comparison results of the execution time between 

the CPU-only implementation and one with the GPU acceleration 

without the shard memory utilization, and Figure 4 shows the 

output image. Table 3 shows comparison results of the execution 

time between the CPU-only implementation and the GPU 

acceleration with the shared memory using CUDA after zero-

padding. Figure 5 shows the output image.  

 

Figure 4. Blended image of CPU-only implementation and 

with the GPU acceleration w/o shared memory. 
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Table 2. The execution time of image blending using CPU and 

GPU (2448*3264, 16 images). 

 
CPU GPU speedup 

Gaussian Pyramids 2.19 0.83 2.62 

Laplacian Pyramids 4.82 1.66 2.90 

Blending 0.52 0.51 1.01 

Reconstruction 2.49 0.78 3.17 

Total 10.04 3.80 2.64 
 

 

Figure 5. Blended image of CPU-only implementation and 

with the GPU acceleration with shared memory after zero-

padding. 

Table 3. The execution time of image blending using CPU and 

GPU with the shared memory (2448*3264, 16 images). 

 
CPU 

GPU  

w/shared 
speedup 

Gaussian Pyramids 2.19 0.54 4.05 

Laplacian Pyramids 4.82 1.01 4.76 

Blending 0.52 0.52 1.00 

Reconstruction 2.49 0.48 5.16 

Total 10.04 2.56 3.92 

As shown in Table 2, the execution time of image blending of the 

CPU-only implementation is 10.04 sec while that of the GPU 

execution is 3.80 sec, which means the execution time is 

improved by more than twice. 

As shown in Table 3, the execution time of image blending is 2.56 

sec using GPU with the utilization of the shared memory. The 

execution time is about four times faster than the CPU-only 

implementation. Also, it is faster than the GPU implementation 

without the shared memory. With the shared memory, threads that 

belong to the same thread block have accesses to the shared 

memory instead of the global memory. Thus, reduction of 

memory accesses to the global memory has led to the performance 

improvement. 

In both experiments, the implementation using GPU is clearly 

advantageous to image blending. Also, the implementation using 

GPU with the shared memory option achieves a remarkable 

performance improvement.  

6. CONCLUSION 
 Demands for high-resolution image processing techniques in 

computer vision grow very rapidly as high-resolution devices such 

as camera sensors become widely available. As the resolution 

grows, the amount of computation in image processing rapidly 

increases as well. In this paper, we have presented a novel image 

blending method with GPU acceleration. We proposed a new 

technique with zero-padding in order to utilize the shared memory 

on GPU efficiently. The experimental results show that the 

execution time of the proposed implementation is faster by 3.9 

times than the CPU-only implementation. Thus, we conclude that 

the implementation using GPU is very effective for image 

blending.  
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