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ABSTRACT 
Today, Convolution Neural Networks (CNN) is adopted by 
various application areas such as computer vision, speech 
recognition, and natural language processing. Due to a massive 
amount of computing for CNN, CNN running on an embedded 
platform may not meet the performance requirement. In this paper, 
we propose a system-on-chip (SoC) CNN architecture synthesized 
by high level synthesis (HLS). HLS is an effective hardware (HW) 
synthesis method in terms of both development effort and 
performance. However, the implementation should be optimized 
carefully in order to achieve a satisfactory performance. Thus, we 
apply several optimization techniques to the proposed CNN 
architecture to satisfy the performance requirement. The proposed 
CNN architecture implemented on a Xilinx’s Zynq platform has 
achieved 23% faster and 9.05 times better throughput per energy 
consumption than an implementation on an Intel i7 Core 
processor.    

CCS Concepts 
• Hardware → Hardware-software codesign; • Computer 
systems organization → Embedded systems; 

Keywords 
CNN; AI; HW/SW Co-Design; HLS; LeNet-5; FPGA; SDSoC; 

1. INTRODUCTION 
Convolution Neural Network (CNN) is a type of Artificial Neural 
Network (ANN) inspired by neural cells. CNN is a technology 
that recognizes a specific pattern by the way people perceive 
objects. CNN attracts attention due to its excellent classification 
capability in image recognition fields [1]. Currently, CNN is 
adopted by video, speech, natural language processing and it has 
achieved remarkable success in many application areas [2-4]. 

To achieve high classification capability, CNN commonly 
employs deep layers composed of many processing layers and 
therefore, the computation amount of CNN is very huge [5]. To 
speed up the CNN processing, many studies have employed 

graphics processing units (GPUs) [6]. Employing GPUs may be 
an effective method to achieve high performance. But the 
development library and environment for mobile GPUs in 
embedded systems is limited [7]. Also, GPUs may not be suitable 
for battery driven embedded systems such as smart phones due to 
its high-power consumption [8]. Therefore, for embedded systems, 
only CPUs are mainly employed for accelerating CNN [9-10]. 

Another alternative method may be the development of a purely 
HW architecture, which offers both high performance and good 
energy efficiency [11]. However, designing Application-specific 
Integrated Circuits (ASICs) at the register-transfer level (RTL) 
needs high design effort and time. 

Recently, a field programmable gate array (FPGA) vendor, Xilinx 
announced a high-level synthesis (HLS) tool called SDSoC with 
C/C++ development environment to generate a HW-SW co-
design on a heterogenous FPGA-CPU platform. HLS enables 
developers to design such an accelerator with a low cost and a 
short time-to-market. The key feature of SDSoC is that it 
transforms C/C++ design descriptions into a HW accelerator with 
relatively low effort and time, and it is possible to achieve high 
performance with reasonable energy consumption. In this paper, 
we propose a system-on-chip (SoC) CNN accelerator that is 
synthesized by SDSoC. Hardware compilation should be carried 
out with appropriate optimization options in order to achieve 
satisfactory performance. The HW logic generated by the default 
compilation option of SDSoC doesn’t meet the target performance 
because operational dependencies of the CNN algorithm are rather 
complicated. Thus, we apply several optimization techniques to 
the proposed CNN architecture to satisfy the target performance. 
Our implementation achieves 9.05 times better throughput per 
energy consumption and 23% faster than an x86-based quad-core 
desktop processor. 

The rest of this paper is organized as follows: Section 2 introduces 
CNN. Section 3 presents the proposed CNN accelerator. Section 4 
shows our experiment results. Section 5 concludes this paper. 

2. CONVOLUTION NEURAL NETWORK 
CNN is inspired by neuroscience. Through development over 20 
years, CNN has received attention in areas such as natural 
language processing and computer vision. Today, some object 
recognition systems based on CNN can recognize objects with 
super-human accuracy [12]. CNN recognizes an object by feature 
extraction and classification. Feature extraction with convolutions 
and sub-samplings is a step to find invariances of an input image 
such as lines and edges. Classification with full-connections 
selects an object of the most likely class based on the extracted 
features. 
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Using convolution, sub-sampling, and fully-connected layers, 
CNN can achieve a highly accurate classification performance.  

Figure 1 shows the architecture of LeNet-5 [13]. It is configured 
with three convolution layers, two sub-sampling layers, and two 
fully-connected layers. LeNet-5 extracts output results called 
feature maps from one 32×32 input image through multiple 
convolution and sub-sampling layers. Finally, the extracted 120 
feature maps of the 1×1 resolution are passed through the fully-
connected layers to get the final classification result, which is a 
digit from 0 to 9. 

2.1 Convolution Layer 
In the convolution layer, element-wise multiplications between an 
input feature map and a convolution kernel are carried out. Figure 
2 shows the process that is composed of several steps in a 
convolution layer. 

First, the input feature map is convolved with a convolution 
kernel. Second, the sum of weighted results from the first stage 
and the bias is calculated. Finally, the sum result is filtered with 
an activation function such as sigmoid, tanh, and ReLu. If an N×N 
input feature map and an m×m convolution kernel are used in a 
convolution layer, the output feature map is determined as (N-
m+1)×(N-m+1). The process in the overall convolution layer may 
be summarized as Equation (1). 

𝑂"
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(𝑖,𝑗) ⋅ 𝐼(𝑥+𝑖,𝑦+𝑗) + 𝑏𝑖𝑎𝑠)
9:;

<=>

9:;

?=>
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In Equation (1), I and O indicate the input and output feature map, 
respectively. A two-dimensional coordinate (x, y) indicates the 
position in the output feature map. W indicates a convolution 
kernel while i, j and t denote the width, the height and the type 
indices of the convolution kernel, respectively. The activation 
function is denoted by f'. For example, convolution layer 1 in 
LeNet-5 uses one input feature map with the resolution of 32×32, 
6 types of convolution kernels with the resolution of 5×5 and 
biases. As the result, 6 output features. 

2.2 Sub-sampling Layer 
Following the execution of a convolution layer, the sub-sampling 
layer reduces the size of feature maps from the previous layer. 
This layer is frequently used in CNN with the purpose to 
gradually reduce the spatial size of the number of features and the 
computational complexity of the neural network. In addition, this 
layer is useful to avoid a problem called overfitting. 

2.3 Fully-connected Layer 
After the feature extraction with multiple convolution and sub-
sampling layers, fully-connected layers follow. The term “fully-
connected” means that all neurons in the previous layer are 
connected to all neurons in the next layer. This layer is used to 
classify an input image into various categories based on training 
datasets. For example, LeNet-5’s last layer in Figure 1 has 10 
possible outputs and each output corresponds a digit from 0 to 9. 

3. IMPLEMENTATION OF CNN 
ACCELERATOR  
3.1 Platform Overview 

In this paper, we implement a CNN accelerator on a Xilinx’s 
Zynq platform using SDSoC [14]. Figure 3 shows the target 
platform. Zynq consists of Processing System (PS) and 
Programmable Logic (PL). PS is a dual-core ARM processor and 
PL is an FPGA logic module which consists of a memory block 
called BRAM, reconfigurable logic blocks such as look-up table 
(LUT), flip-flops (FFs), and digital signal processors (DSPs).  

In our implementation, considering the characteristic of PS and 
PL, we assigned operation processes into two modules. In PS, the 
host ARM processor reads input feature maps, convolution 
kernels, and biases from the RAM in PS (Host RAM). Then, PS 
executes zero-padding of the input feature maps and sends data to 
on-chip buffers in PL through interconnection called Accelerator 
Coherency Port (ACP). After zero-padding, the feature extraction 
which consists of multiple convolution and sub-sampling 
operations is carried out iteratively by the logic mapped in PL. 
After both convolution and sub-sampling are completed, the result 
data is sent back to Host RAM in PS. 

3.2 Proposed Implementation Method  
In theory, it would be advantageous to calculate partial sums of 
several output feature maps in parallel. However, due to the 
limitations of memory resource and bandwidth, calculating 
several output feature maps in parallel is not adequate in the 
FPGA-based HW design. Therefore, calculating only one output 
feature map in parallel is conducted in our proposed 
implementation and the process of calculating one output feature 
map is conducted by computing several partial sums in parallel. 

To parallelize the convolution layer, loop unrolling and loop 
pipelining techniques are applied by adding corresponding high-
level synthesis pragmas as shown in Figure 4. With #HLS unroll 
pragma, SDSoC generates unrolled C codes. Loop unrolling is a 
key to achieve high performance through parallelization. It is used 
to make parallel instantiations of the loop body. It creates multiple 
HW logic blocks corresponding to the loop iteration counter. 
Therefore, the resource utilization rate in FPGA increases. Loop 

Figure 1. The architecture of LeNet-5 
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Figure 3. Proposed accelerator in FPGA-CPU Platform 
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pipelining is also a powerful technique to improve throughput by 
executing loop iterations in an overlapping fashion. With #HLS 
pipeline pragma, each iteration is divided into small stages and a 
pipeline logic that meets the timing constraints is generated. 

The processing code in the convolution layer is composed of 
deeply nested loops that need to be synthesized carefully. Inner 
loops have low iteration counts and the outer loops have high 
iteration counts. For the best utilization of these characteristics, it 
is desirable to apply the loop unrolling to the inner loops to 
maximize parallelism and apply the loop pipelining to the outer 
loops to maximize throughput. In SDSoC, when the pipelining is 
applied to deeply nested loops, the innermost loop is fully 
unrolled automatically. However, when the unrolled loop has 
several memory accesses or complex operations, the synthesized 
circuit may suffer from timing violations 

Moreover, in order to maximize performance gain from these 
optimization methods, some loops are modified by eliminating 
some dependencies. In the convolution layer, there is some 
reduction case where multiple operations attempt to access the 
same variable and update the value, called Read-After-Write 
(RAW) dependency. The loops in the convolution layer are not 
suitable to parallelizing optimization methods because such RAW 
dependency forces the computation to be serialized. 

To overcome such problems, in our implementation, we apply a 
loop tiling method so that the synthesized HW can carry out 
computations in parallel. The loop tiling is a method to partition a 
loop’s iteration into smaller blocks so that memory access patterns, 
and therefore, data dependencies may be changed.  

A loop tiling method turns out to be very effective for CNN 
processing acceleration. By intelligently grouping the processing 
of the convolution layer, it becomes possible that a HW logic 
block that can carry out the computation in parallel may be 
synthesized. We divide the computing process for the partial sum 
of an output feature map into several steps: kernel columns (kc), 
kernel rows (kr), and kernel depths (kd). Figure 5vshows the 
acceleration structure with the loop tiling method for the proposed 
CNN accelerator. The loop iterations of computing one output 
feature map are tiled into blocks with the tile size of (KC, KR, KD) 
and the loops labeled as “kernel row” and “kernel column” are 
selected to be unrolled and the loop “kernel depth” is selected to 

be loop-pipelined. Table 1 shows the count of loop iterations in 
each convolution layer.  

Table 1. The count of iteration in convolution layer 

Convolution 
Layer 

Kernel 
Depth 
(KD) 

Kernel 
Rows 
(KR) 

Kernel 
Columns 

(KC) 
1 1 5 5 
2 6 5 5 
3 16 5 5 

Figure 6 shows the comparison of execution time between the 
proposed CNN accelerator and the SW implementation in PS. The 
execution time of each implementation is the result of each layer 
in processing 10 batches, which is the number of input images. 
The proposed method based on tiling (HWPROPOSED) shows better 
execution time performance. In the default HW implementation 
where dependency exists (HWDEFAULT), it takes 2.41 times on 
average more than the SW implementation where everything is 
run only on PS. However, the proposed method shows 4.4 times 
on average less. Thus, it is verified that the proposed method is an 
effective technique to improve the execution time. 

4. RESULT AND ANALYSIS 
In this paper, we propose a HW implementation of the LeNet-5 
architecture on an embedded SoC platform. We used the Xilinx 

 
Figure 4. Pseudo-code of the proposed CNN accelerator  

 
 

 // Load input feature map, convolution kernel, bias to buffer 
for(b=0; b <B; b++) { // # of input image 
for(do =0; do <D; do ++) {  // output feature map 
for(ir=0, ic=0; ir <IR, ic<IL; ir ++, ic++) { //input feature map 
// Tiling based computation part 
for(kd=0; kd <KD; kd ++) { // kernel depth 
#pragma HLS pipeline 
for(kr=0; kr <KR; kr ++) { // kernel row   
#pragma HLS unroll 
for(kc=0; kc <KC; kc++) { // kernel col 

#pragma HLS unroll 
.element[kc] = input[b][kd][ir+kr][ic+kc] * kernel[do][kd][kr][kc] 
}  
// Sum of column element in same row line 

sum_srl[kr] =  element[0] + …. element[KC-1]; 
}  
// Sum of multiple row lines 
sum_mrl[kd] =  sum_srl[0] + …. sum_srl[KR-1]; 

}  
// Sum of all row lines and Activation function 
result = sum_mrl[0] + …. sum_mrl[KD-1] 
output[b][do][ir][ic] = Activation(result + bias[do])  

} } } 

 
Figure 6. Execution time comparison of implementation  

 
Figure 5. The accelerator structure with tiling technique  
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Zynq zc706 device which contains a dual ARM Cortex A9 core 
processor as PS and Kintex-7 FPGA as PL. The HW accelerator is 
synthesized with SDSoC v2016.3. We compare the proposed 
implementation with other conventional implementations in terms 
of performance and power efficiency. Three different versions of 
software implementations are compared. First, SWPS represents a 
parallel software implementation of the CNN on PS. SWi7 
represents a software implementation of Intel i7-6700 with 8 
threads, and SWRP is another software implementation on a 
Raspberry Pi3 platform with 4 threads. Raspberry Pi3 is one of the 
most popular embedded platforms [15]. HWD represents a 
synthesized HW based on the default CNN architecture and HWO 
is the proposed implementation with the application of the 
proposed loop optimization methods. All the software 
implementations are parallelized by OpenMP pragmas with the 
optimization option, OpenMP-O3. The operating clock speed of 
each implementation is summarized in Table 2. 

To evaluate performance of the proposed method, the MNIST 
benchmark [16] was used as the test workload. MNIST is one of 
the most widely used benchmarks in pattern recognition. It 
consists of handwritten images for a single digit from 0 to 9 and it 
has 55,000 training sets and 10,000 test sets. The execution time 
and the energy dissipation for executing the feature extraction 
during classification of 10,000 images have been measured.  

Table 2. The specification of implementations 

Metrics SWRP SWi7 SWPS HWD HWO 

Core Cortex 
A53 X86 Cortex 

A9 
Cortex A9 / 

 FPGA 
Clock 
(GHz) 1.3 3.5 1.0 1.0 (PS) /  

0.17 (FPGA) 
# of 
Core 4 4 2 2 (PS) 

4.1 Performance and Energy Consumption 
Table 3 shows comparison of the execution time between the 
proposed CNN accelerator and the other implementations. We 
also measured power consumption and energy dissipation of each 
implementation using a pluggable power meter. 
Overall, HWO takes less execution time than the other 
implementations. HWO shows a speedup of up to 3.66 in the 
convolution and sub-sampling process compared to SWPS. 
However, the execution time of HWD is the longest. There are two 
main reasons why HWD is the slowest. First, the dependency in 
HWD forces the HW execution to be serialized, and thus, the 
pipeline is heavily stalled. Secondly, the operating frequency of 
FPGA (0.166 GHz) is much lower than PS (at least 0.6 GHz). 
Also, HWO shows the best energy consumption. Compared to 
SWi7, HWO is 7.29 times better with respect to energy 
consumption. Especially, compared to SWRP, HWO is 91% faster 
while dissipating a similar level of energy. 
 

Table 3. Performance comparison (10,000 Images) 

Metrics SWRP SWi7 SWPS HWD HWO 
Execution 
Time (s) 30.76 19.78 58.8 312.7 16.07 

Power 
(W) 4.75 65 7.2 7.68 10.98 

Energy 
(J) 146.11 1285.7 423.36 2401.5 176.45 

 

4.2 HW Resource Utilization 
Table 4 summarizes the FPGA utilization of the synthesized HW. 
When the proposed loop optimization techniques are applied, the 
HW size increases significantly because the HW logic is 
optimized for faster parallel execution. Even if it seems that the 
size of HWO is much bigger than that of HWD, in FPGA devices, 
all the resource is built-in. So, utilizing more resource to improve 
performance is commonly justified 

Table 4. FPGA HW utilization 

Resource DSP BRAM FF LUT 
HWD 25 2 10173 8731 
HWO 59 97 59198 39837 

4.3 Overall Performance Comparison 
Table 5 shows comparison of implementations in terms of 
throughput, which is the number of processed images that can be 
processed per second. The proposed method, HWO achieves 
622.28. Also, Throughput/Energy has been computed, and HWO 
shows a much better than others. Compared to x86 based SWi7, it 
is 9.05 times better throughput per energy consumption. Therefore, 
we conclude that the proposed implementation is very effective 
for both execution time and energy efficiency. 

Table 5. Performance efficiency 

Metrics SWRP SWi7 SWPS HWD HWO 
Performance 

(Image/s) 325.1 505.56 170.1 31.98 622.28 

Performance 
per Energy 2.23 0.39 0.4 0.01 3.53 

5. CONCLUSION 
In this paper, an implementation for LeNet-5 on an embedded 
SoC platform was presented. The proposed implementation was 
optimized with various techniques. Especially, a technique called 
loop tiling was very effective to optimize the design. A high-level 
synthesis tool called SDSoC was used to synthesize the HW 
accelerator, and the synthesized design shows much better 
throughput per energy consumption than other conventional 
implementations on either desktop or embedded platforms. 
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