
Implementation of a CNN accelerator on an Embedded
SoC Platform using SDSoC

Sang-Soo Park
Dept. of Electronics Engineering
Hangdang-dong, Seongdong-gu

Seoul, Korea
82-2-2220-4701

po092000@hanyang.ac.kr

Kyeong-Bin Park
Dept. of Electronics Engineering
Hangdang-dong, Seongdong-gu

Seoul, Korea
82-2-2220-4701

lay1523@naver.com

Ki-Seok Chung
Dept. of Electronics Engineering
Hangdang-dong, Seongdong-gu

Seoul, Korea
82-2-2220-4701

kchung@hanyang.ac.kr

ABSTRACT
Today, Convolution Neural Networks (CNN) is adopted by
various application areas such as computer vision, speech
recognition, and natural language processing. Due to a massive
amount of computing for CNN, CNN running on an embedded
platform may not meet the performance requirement. In this paper,
we propose a system-on-chip (SoC) CNN architecture synthesized
by high level synthesis (HLS). HLS is an effective hardware (HW)
synthesis method in terms of both development effort and
performance. However, the implementation should be optimized
carefully in order to achieve a satisfactory performance. Thus, we
apply several optimization techniques to the proposed CNN
architecture to satisfy the performance requirement. The proposed
CNN architecture implemented on a Xilinx’s Zynq platform has
achieved 23% faster and 9.05 times better throughput per energy
consumption than an implementation on an Intel i7 Core
processor.

CCS Concepts
• Hardware → Hardware-software codesign; • Computer
systems organization → Embedded systems;

Keywords
CNN; AI; HW/SW Co-Design; HLS; LeNet-5; FPGA; SDSoC;

1. INTRODUCTION
Convolution Neural Network (CNN) is a type of Artificial Neural
Network (ANN) inspired by neural cells. CNN is a technology
that recognizes a specific pattern by the way people perceive
objects. CNN attracts attention due to its excellent classification
capability in image recognition fields [1]. Currently, CNN is
adopted by video, speech, natural language processing and it has
achieved remarkable success in many application areas [2-4].

To achieve high classification capability, CNN commonly
employs deep layers composed of many processing layers and
therefore, the computation amount of CNN is very huge [5]. To
speed up the CNN processing, many studies have employed

graphics processing units (GPUs) [6]. Employing GPUs may be
an effective method to achieve high performance. But the
development library and environment for mobile GPUs in
embedded systems is limited [7]. Also, GPUs may not be suitable
for battery driven embedded systems such as smart phones due to
its high-power consumption [8]. Therefore, for embedded systems,
only CPUs are mainly employed for accelerating CNN [9-10].

Another alternative method may be the development of a purely
HW architecture, which offers both high performance and good
energy efficiency [11]. However, designing Application-specific
Integrated Circuits (ASICs) at the register-transfer level (RTL)
needs high design effort and time.

Recently, a field programmable gate array (FPGA) vendor, Xilinx
announced a high-level synthesis (HLS) tool called SDSoC with
C/C++ development environment to generate a HW-SW co-
design on a heterogenous FPGA-CPU platform. HLS enables
developers to design such an accelerator with a low cost and a
short time-to-market. The key feature of SDSoC is that it
transforms C/C++ design descriptions into a HW accelerator with
relatively low effort and time, and it is possible to achieve high
performance with reasonable energy consumption. In this paper,
we propose a system-on-chip (SoC) CNN accelerator that is
synthesized by SDSoC. Hardware compilation should be carried
out with appropriate optimization options in order to achieve
satisfactory performance. The HW logic generated by the default
compilation option of SDSoC doesn’t meet the target performance
because operational dependencies of the CNN algorithm are rather
complicated. Thus, we apply several optimization techniques to
the proposed CNN architecture to satisfy the target performance.
Our implementation achieves 9.05 times better throughput per
energy consumption and 23% faster than an x86-based quad-core
desktop processor.

The rest of this paper is organized as follows: Section 2 introduces
CNN. Section 3 presents the proposed CNN accelerator. Section 4
shows our experiment results. Section 5 concludes this paper.

2. CONVOLUTION NEURAL NETWORK
CNN is inspired by neuroscience. Through development over 20
years, CNN has received attention in areas such as natural
language processing and computer vision. Today, some object
recognition systems based on CNN can recognize objects with
super-human accuracy [12]. CNN recognizes an object by feature
extraction and classification. Feature extraction with convolutions
and sub-samplings is a step to find invariances of an input image
such as lines and edges. Classification with full-connections
selects an object of the most likely class based on the extracted
features.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full
citation on the first page. Copyrights for components of this work owned by others
than ACM must be honored. Abstracting with credit is permitted. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from Permissions@acm.org.

ICDSP 2018, February 25–27, 2018, Tokyo, Japan
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-6402-7/18/02$15.00
https://doi.org/10.1145/3193025.3193041

Using convolution, sub-sampling, and fully-connected layers,
CNN can achieve a highly accurate classification performance.

Figure 1 shows the architecture of LeNet-5 [13]. It is configured
with three convolution layers, two sub-sampling layers, and two
fully-connected layers. LeNet-5 extracts output results called
feature maps from one 32×32 input image through multiple
convolution and sub-sampling layers. Finally, the extracted 120
feature maps of the 1×1 resolution are passed through the fully-
connected layers to get the final classification result, which is a
digit from 0 to 9.

2.1 Convolution Layer
In the convolution layer, element-wise multiplications between an
input feature map and a convolution kernel are carried out. Figure
2 shows the process that is composed of several steps in a
convolution layer.

First, the input feature map is convolved with a convolution
kernel. Second, the sum of weighted results from the first stage
and the bias is calculated. Finally, the sum result is filtered with
an activation function such as sigmoid, tanh, and ReLu. If an N×N
input feature map and an m×m convolution kernel are used in a
convolution layer, the output feature map is determined as (N-
m+1)×(N-m+1). The process in the overall convolution layer may
be summarized as Equation (1).

𝑂"
($,&) = 𝑓′(+ + 𝑊	𝑡

(𝑖,𝑗) ⋅ 𝐼(𝑥+𝑖,𝑦+𝑗) + 𝑏𝑖𝑎𝑠)
9:;

<=>

9:;

?=>

 (1)

In Equation (1), I and O indicate the input and output feature map,
respectively. A two-dimensional coordinate (x, y) indicates the
position in the output feature map. W indicates a convolution
kernel while i, j and t denote the width, the height and the type
indices of the convolution kernel, respectively. The activation
function is denoted by f'. For example, convolution layer 1 in
LeNet-5 uses one input feature map with the resolution of 32×32,
6 types of convolution kernels with the resolution of 5×5 and
biases. As the result, 6 output features.

2.2 Sub-sampling Layer
Following the execution of a convolution layer, the sub-sampling
layer reduces the size of feature maps from the previous layer.
This layer is frequently used in CNN with the purpose to
gradually reduce the spatial size of the number of features and the
computational complexity of the neural network. In addition, this
layer is useful to avoid a problem called overfitting.

2.3 Fully-connected Layer
After the feature extraction with multiple convolution and sub-
sampling layers, fully-connected layers follow. The term “fully-
connected” means that all neurons in the previous layer are
connected to all neurons in the next layer. This layer is used to
classify an input image into various categories based on training
datasets. For example, LeNet-5’s last layer in Figure 1 has 10
possible outputs and each output corresponds a digit from 0 to 9.

3. IMPLEMENTATION OF CNN
ACCELERATOR
3.1 Platform Overview

In this paper, we implement a CNN accelerator on a Xilinx’s
Zynq platform using SDSoC [14]. Figure 3 shows the target
platform. Zynq consists of Processing System (PS) and
Programmable Logic (PL). PS is a dual-core ARM processor and
PL is an FPGA logic module which consists of a memory block
called BRAM, reconfigurable logic blocks such as look-up table
(LUT), flip-flops (FFs), and digital signal processors (DSPs).

In our implementation, considering the characteristic of PS and
PL, we assigned operation processes into two modules. In PS, the
host ARM processor reads input feature maps, convolution
kernels, and biases from the RAM in PS (Host RAM). Then, PS
executes zero-padding of the input feature maps and sends data to
on-chip buffers in PL through interconnection called Accelerator
Coherency Port (ACP). After zero-padding, the feature extraction
which consists of multiple convolution and sub-sampling
operations is carried out iteratively by the logic mapped in PL.
After both convolution and sub-sampling are completed, the result
data is sent back to Host RAM in PS.

3.2 Proposed Implementation Method
In theory, it would be advantageous to calculate partial sums of
several output feature maps in parallel. However, due to the
limitations of memory resource and bandwidth, calculating
several output feature maps in parallel is not adequate in the
FPGA-based HW design. Therefore, calculating only one output
feature map in parallel is conducted in our proposed
implementation and the process of calculating one output feature
map is conducted by computing several partial sums in parallel.

To parallelize the convolution layer, loop unrolling and loop
pipelining techniques are applied by adding corresponding high-
level synthesis pragmas as shown in Figure 4. With #HLS unroll
pragma, SDSoC generates unrolled C codes. Loop unrolling is a
key to achieve high performance through parallelization. It is used
to make parallel instantiations of the loop body. It creates multiple
HW logic blocks corresponding to the loop iteration counter.
Therefore, the resource utilization rate in FPGA increases. Loop

Figure 1. The architecture of LeNet-5

.

C1:feature maps
28×28×6

S1:f.maps
14×14×6

C2:f.maps
10×10×16 S2:f.maps

5×5×16
C3:f.maps
1×1×120

FC1:layer
120×84

FC2:layer
84×10

Input
32×32

Feature extraction Classification

Convolutions Sub-samplings Convolutions Sub-samplings Full-connections

Output
1×10

Figure 2. The process of convolution layer

.

Figure 3. Proposed accelerator in FPGA-CPU Platform

Programmable Logic (PL)

FPGA Logics

Processing System (PS)

C
ac

he
H

os
t R

A
MCortex A9

READ
Input Feature Maps

READ
Convolution Weights

Zero Padding

O
n-

C
hi

p
B

uf
fe

r Convolution Layer 1

Sub-sampling Layer 1

Convolution Layer 2

Sub-sampling Layer 2

Convolution Layer 3

pipelining is also a powerful technique to improve throughput by
executing loop iterations in an overlapping fashion. With #HLS
pipeline pragma, each iteration is divided into small stages and a
pipeline logic that meets the timing constraints is generated.

The processing code in the convolution layer is composed of
deeply nested loops that need to be synthesized carefully. Inner
loops have low iteration counts and the outer loops have high
iteration counts. For the best utilization of these characteristics, it
is desirable to apply the loop unrolling to the inner loops to
maximize parallelism and apply the loop pipelining to the outer
loops to maximize throughput. In SDSoC, when the pipelining is
applied to deeply nested loops, the innermost loop is fully
unrolled automatically. However, when the unrolled loop has
several memory accesses or complex operations, the synthesized
circuit may suffer from timing violations

Moreover, in order to maximize performance gain from these
optimization methods, some loops are modified by eliminating
some dependencies. In the convolution layer, there is some
reduction case where multiple operations attempt to access the
same variable and update the value, called Read-After-Write
(RAW) dependency. The loops in the convolution layer are not
suitable to parallelizing optimization methods because such RAW
dependency forces the computation to be serialized.

To overcome such problems, in our implementation, we apply a
loop tiling method so that the synthesized HW can carry out
computations in parallel. The loop tiling is a method to partition a
loop’s iteration into smaller blocks so that memory access patterns,
and therefore, data dependencies may be changed.

A loop tiling method turns out to be very effective for CNN
processing acceleration. By intelligently grouping the processing
of the convolution layer, it becomes possible that a HW logic
block that can carry out the computation in parallel may be
synthesized. We divide the computing process for the partial sum
of an output feature map into several steps: kernel columns (kc),
kernel rows (kr), and kernel depths (kd). Figure 5vshows the
acceleration structure with the loop tiling method for the proposed
CNN accelerator. The loop iterations of computing one output
feature map are tiled into blocks with the tile size of (KC, KR, KD)
and the loops labeled as “kernel row” and “kernel column” are
selected to be unrolled and the loop “kernel depth” is selected to

be loop-pipelined. Table 1 shows the count of loop iterations in
each convolution layer.

Table 1. The count of iteration in convolution layer

Convolution
Layer

Kernel
Depth
(KD)

Kernel
Rows
(KR)

Kernel
Columns

(KC)
1 1 5 5
2 6 5 5
3 16 5 5

Figure 6 shows the comparison of execution time between the
proposed CNN accelerator and the SW implementation in PS. The
execution time of each implementation is the result of each layer
in processing 10 batches, which is the number of input images.
The proposed method based on tiling (HWPROPOSED) shows better
execution time performance. In the default HW implementation
where dependency exists (HWDEFAULT), it takes 2.41 times on
average more than the SW implementation where everything is
run only on PS. However, the proposed method shows 4.4 times
on average less. Thus, it is verified that the proposed method is an
effective technique to improve the execution time.

4. RESULT AND ANALYSIS
In this paper, we propose a HW implementation of the LeNet-5
architecture on an embedded SoC platform. We used the Xilinx

Figure 4. Pseudo-code of the proposed CNN accelerator

 // Load input feature map, convolution kernel, bias to buffer
for(b=0; b <B; b++) { // # of input image
for(do =0; do <D; do ++) { // output feature map
for(ir=0, ic=0; ir <IR, ic<IL; ir ++, ic++) { //input feature map
// Tiling based computation part
for(kd=0; kd <KD; kd ++) { // kernel depth
#pragma HLS pipeline
for(kr=0; kr <KR; kr ++) { // kernel row
#pragma HLS unroll
for(kc=0; kc <KC; kc++) { // kernel col

#pragma HLS unroll
.element[kc] = input[b][kd][ir+kr][ic+kc] * kernel[do][kd][kr][kc]
}
// Sum of column element in same row line

sum_srl[kr] = element[0] + …. element[KC-1];
}
// Sum of multiple row lines
sum_mrl[kd] = sum_srl[0] + …. sum_srl[KR-1];

}
// Sum of all row lines and Activation function
result = sum_mrl[0] + …. sum_mrl[KD-1]
output[b][do][ir][ic] = Activation(result + bias[do])

} } }

Figure 6. Execution time comparison of implementation

Figure 5. The accelerator structure with tiling technique

Weights ×
Feature maps

Weights ×
Feature maps

+KC

Weights ×
Feature maps

Weights ×
Feature maps

+

KR
+

+

Weights ×
Feature maps

Weights ×
Feature maps

+
+

+

+

+

KD

Kernel
 Columns (kc)

Kernel
Rows (kr)

Kernel
Depths (kd)

+

Zynq zc706 device which contains a dual ARM Cortex A9 core
processor as PS and Kintex-7 FPGA as PL. The HW accelerator is
synthesized with SDSoC v2016.3. We compare the proposed
implementation with other conventional implementations in terms
of performance and power efficiency. Three different versions of
software implementations are compared. First, SWPS represents a
parallel software implementation of the CNN on PS. SWi7
represents a software implementation of Intel i7-6700 with 8
threads, and SWRP is another software implementation on a
Raspberry Pi3 platform with 4 threads. Raspberry Pi3 is one of the
most popular embedded platforms [15]. HWD represents a
synthesized HW based on the default CNN architecture and HWO
is the proposed implementation with the application of the
proposed loop optimization methods. All the software
implementations are parallelized by OpenMP pragmas with the
optimization option, OpenMP-O3. The operating clock speed of
each implementation is summarized in Table 2.

To evaluate performance of the proposed method, the MNIST
benchmark [16] was used as the test workload. MNIST is one of
the most widely used benchmarks in pattern recognition. It
consists of handwritten images for a single digit from 0 to 9 and it
has 55,000 training sets and 10,000 test sets. The execution time
and the energy dissipation for executing the feature extraction
during classification of 10,000 images have been measured.

Table 2. The specification of implementations

Metrics SWRP SWi7 SWPS HWD HWO

Core Cortex
A53 X86 Cortex

A9
Cortex A9 /

 FPGA
Clock
(GHz) 1.3 3.5 1.0 1.0 (PS) /

0.17 (FPGA)
of
Core 4 4 2 2 (PS)

4.1 Performance and Energy Consumption
Table 3 shows comparison of the execution time between the
proposed CNN accelerator and the other implementations. We
also measured power consumption and energy dissipation of each
implementation using a pluggable power meter.
Overall, HWO takes less execution time than the other
implementations. HWO shows a speedup of up to 3.66 in the
convolution and sub-sampling process compared to SWPS.
However, the execution time of HWD is the longest. There are two
main reasons why HWD is the slowest. First, the dependency in
HWD forces the HW execution to be serialized, and thus, the
pipeline is heavily stalled. Secondly, the operating frequency of
FPGA (0.166 GHz) is much lower than PS (at least 0.6 GHz).
Also, HWO shows the best energy consumption. Compared to
SWi7, HWO is 7.29 times better with respect to energy
consumption. Especially, compared to SWRP, HWO is 91% faster
while dissipating a similar level of energy.

Table 3. Performance comparison (10,000 Images)

Metrics SWRP SWi7 SWPS HWD HWO
Execution
Time (s) 30.76 19.78 58.8 312.7 16.07

Power
(W) 4.75 65 7.2 7.68 10.98

Energy
(J) 146.11 1285.7 423.36 2401.5 176.45

4.2 HW Resource Utilization
Table 4 summarizes the FPGA utilization of the synthesized HW.
When the proposed loop optimization techniques are applied, the
HW size increases significantly because the HW logic is
optimized for faster parallel execution. Even if it seems that the
size of HWO is much bigger than that of HWD, in FPGA devices,
all the resource is built-in. So, utilizing more resource to improve
performance is commonly justified

Table 4. FPGA HW utilization

Resource DSP BRAM FF LUT
HWD 25 2 10173 8731
HWO 59 97 59198 39837

4.3 Overall Performance Comparison
Table 5 shows comparison of implementations in terms of
throughput, which is the number of processed images that can be
processed per second. The proposed method, HWO achieves
622.28. Also, Throughput/Energy has been computed, and HWO
shows a much better than others. Compared to x86 based SWi7, it
is 9.05 times better throughput per energy consumption. Therefore,
we conclude that the proposed implementation is very effective
for both execution time and energy efficiency.

Table 5. Performance efficiency

Metrics SWRP SWi7 SWPS HWD HWO
Performance

(Image/s) 325.1 505.56 170.1 31.98 622.28

Performance
per Energy 2.23 0.39 0.4 0.01 3.53

5. CONCLUSION
In this paper, an implementation for LeNet-5 on an embedded
SoC platform was presented. The proposed implementation was
optimized with various techniques. Especially, a technique called
loop tiling was very effective to optimize the design. A high-level
synthesis tool called SDSoC was used to synthesize the HW
accelerator, and the synthesized design shows much better
throughput per energy consumption than other conventional
implementations on either desktop or embedded platforms.

6. ACKNOWLEDGMENTS
This work was supported by the Technology Innovation Program
(10076583, Development of free-running speech recognition
technologies for embedded robot system) funded By the Ministry
of Trade, Industry & Energy(MOTIE, Korea).

7. REFERENCES
[1] Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S.,

Anguelov, D., ... & Rabinovich, A. (2015). Going deeper
with convolutions. In Proceedings of the IEEE conference on
computer vision and pattern recognition (pp. 1-9).

[2] Hsu, W. N., Zhang, Y., Lee, A., & Glass, J. R. (2016).
Exploiting Depth and Highway Connections in
Convolutional Recurrent Deep Neural Networks for Speech
Recognition. In INTERSPEECH (pp. 395-399).

[3] Karpathy, A., Toderici, G., Shetty, S., Leung, T., Sukthankar,
R., & Fei-Fei, L. (2014). Large-scale video classification
with convolutional neural networks. In Proceedings of the
IEEE conference on Computer Vision and Pattern
Recognition (pp. 1725-1732).

[4] Yin, W., Kann, K., Yu, M., & Schütze, H. (2017).
Comparative Study of CNN and RNN for Natural Language
Processing. arXiv preprint arXiv:1702.01923.

[5] Cong, J., & Xiao, B. (2014, September). Minimizing
computation in convolutional neural networks. In
International conference on artificial neural networks (pp.
281-290). Springer, Cham.

[6] Chetlur, S., Woolley, C., Vandermersch, P., Cohen, J., Tran,
J., Catanzaro, B., & Shelhamer, E. (2014). cudnn: Efficient
primitives for deep learning. arXiv preprint arXiv:1410.0759.

[7] Alzantot, M., Wang, Y., Ren, Z., & Srivastava, M. B. (2017,
June). RSTensorFlow: GPU Enabled TensorFlow for Deep
Learning on Commodity Android Devices. In Proceedings of
the 1st International Workshop on Deep Learning for Mobile
Systems and Applications (pp. 7-12). ACM.

[8] Canziani, A., Paszke, A., & Culurciello, E. (2016). An
analysis of deep neural network models for practical
applications. arXiv preprint arXiv:1605.07678.

[9] Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J.,
Girshick, R., ... & Darrell, T. (2014, November). Caffe:
Convolutional architecture for fast feature embedding. In
Proceedings of the 22nd ACM international conference on
Multimedia (pp. 675-678). ACM.

[10] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z.,
Citro, C., ... & Ghemawat, S. (2016). Tensorflow: Large-
scale machine learning on heterogeneous distributed systems.
arXiv preprint arXiv:1603.04467.

[11] Chen, Y. H., Krishna, T., Emer, J. S., & Sze, V. (2017).
Eyeriss: An energy-efficient reconfigurable accelerator for
deep convolutional neural networks. IEEE Journal of Solid-
State Circuits, 52(1), 127-138.

[12] He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual
learning for image recognition. In Proceedings of the IEEE
conference on computer vision and pattern recognition (pp.
770-778).

[13] LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998).
Gradient-based learning applied to document recognition.
Proceedings of the IEEE, 86(11), 2278-2324.

[14] Kathail, V., Hwang, J., Sun, W., Chobe, Y., Shui, T., &
Carrillo, J. (2016, February). SDSoC: A Higher-level
Programming Environment for Zynq SoC and Ultrascale+
MPSoC. In Proceedings of the 2016 ACM/SIGDA
International Symposium on Field-Programmable Gate
Arrays (pp. 4-4). ACM.

[15] Raspberry pi 3, https://www.raspberrypi.org/
[16] LeCun, Y., Cortes, C., & Burges, C. J. (2010). MNIST

handwritten digit database. AT&T Labs [Online]. Available:
http://yann. lecun. com/exdb/mnist, 2.

