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ABSTRACT 

Today, recurrent neural network (RNN) is used in various 

applications like image captioning, speech recognition and 

machine translation. However, because of data dependencies, 

recurrent neural network is hard to parallelize. Furthermore, to 

increase network’s accuracy, recurrent neural network uses 

complicated cell units such as long short-term memory (LSTM) 

and gated recurrent unit (GRU). To run such models on an 

embedded system, the size of the network model and the amount 

of computation need to be reduced to achieve low power 

consumption and low required memory bandwidth. In this paper, 

implementation of RNN based on GRU with a logarithmic 

quantization method is proposed. The proposed implementation is 

synthesized using high-level synthesis (HLS) targeting Xilinx 

ZCU102 FPGA running at 100MHz. The proposed 

implementation with an 8-bit log-quantization achieves 90.57% 

accuracy without re-training or fine-tuning. And the memory 

usage is 31% lower than that for an implementation with 32-bit 

floating point data representation. 

CCS Concepts 

• Hardware → High-level and register-transfer level synthesis; 

Hardware accelerators • Computer systems organization → 

Embedded systems; Neural networks; Heterogenous (hybrid) 

system. 

Keywords 
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1. INTRODUCTION 
Convolutional neural network (CNN) and recurrent neural 

network (RNN) have proved their usefulness in various 

applications. In image classification and recognition, quite a few 

CNN models have proven their high accuracy [1], [2]. RNN 

models are widely used in machine translation, speech recognition, 

and music composition [3], [4]. 

However, neural network models have rapidly increased the 

number of processing layers and the amount of computation to 

achieve higher accuracy. The number of parameters and the size 

of memory requirement are getting bigger, as well. To run these 

large networks on embedded systems, computational workload 

needs to be reduced so that they can run on embedded systems in 

real time. Embedded systems typically have a small amount of 

memory and limited processing power, and also many of them are 

very sensitive to energy dissipation. Therefore, it is very important 

to optimize RNN in terms of processing speed, memory usage and 

power dissipation. 

Many researches have been conducted to reduce the size of 

parameters. There are several ways to achieve this goal; pruning, 

factorization, quantization, entropy coding [5]-[9]. For example, 

Deep Compression [5] uses three techniques: pruning, 

quantization, and Huffman coding. They reduced the size of 

parameters in VGG-16 [10] from 522MB to 11.3MB, which is 49 

times smaller. And SqueezeNet [6] achieved 80.3 % Top-5 

ImageNet accuracy, which is the same as AlexNet [7], with 510 

times smaller model size by using Deep Compression. On the 

other hand, [8] and [9] used quantization rather than compression. 

[8] used a 12-bit fixed point representation on long short-term 

memory (LSTM) networks and achieved only 0.3% accuracy drop 

compared to a model with 32-bit floating point representation. 

In this paper, we propose a logarithmic quantization on RNN, 

specifically, gated recurrent unit (GRU) cell architecture to reduce 

the total model size, including the amount of data transaction 

between cells. We use a pre-trained model and apply this method 

to input vectors, hidden states. And quantization and shift modules 

are added to convert from the floating-point data type to our 8-bit 

custom data type. 

2. BACKGROUND 

2.1 Introduction of RNN 
RNN models accept an input vector sequence 𝑥 = (𝑥1; 𝑥2; … ; 𝑥𝑇) 
and produce output 𝑦 = (𝑦1; 𝑦2; … ; 𝑦𝑇)  over time T and each 

vector has its own time stamp. In time t, RNN cell takes the 

corresponding vector 𝑥𝑡 and calculates the hidden state vector, ℎ𝑡. 

𝑊ℎ and 𝑊𝑥 are weight matrices for hidden states and input vectors, 

respectively, and b is a bias vector. 

ℎ𝑡 = 𝑡𝑎𝑛ℎ(𝑊ℎℎ𝑡−1 +  𝑊𝑥𝑥𝑡 +  𝑏ℎ) (1) 

The computation of a basic RNN cell is shown in (1). It implies 

that a hidden state of the current time is influenced by hidden 

states of the previous times. This data dependency makes RNNs 

hard to parallelize. Weights and biases are shared throughout one 

layer. In perspective of weight sharing, one RNN layer with n 
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cells is conceptually the same as unfolded form of one cell over n 

time periods. We call this n as a hidden size of the layer. 

The basic RNN cell, however, may suffer from a problem called 

vanishing gradient problem; a gradient value is getting smaller 

and smaller during the training. And it makes difficult to learn 

contexts with long ranged dependency. Because of this, currently, 

large networks commonly use LSTM [11] or GRU [12]. An 

LSTM cell has 3 additional gates; forgot gate (𝑓𝑡), input gate (𝑖𝑡), 

and output gate (𝑜𝑡). It also adds a new state called cell state (𝐶𝑡). 

LSTM computation is described in (2). Weights and biases are 

distinguished by subscripts; for example, 𝑊𝑥𝑓 is the weight for 

𝑥𝑡 in a forgot gate. The operator ⊙  denotes the element-wise 

product, and activation function σ is sigmoid.  

𝑓𝑡 = 𝜎(𝑊𝑥𝑓𝑥𝑡 + 𝑊ℎ𝑓ℎ𝑡−1 + 𝑏𝑓) 

𝑖𝑡 = 𝜎(𝑊𝑥𝑖𝑥𝑡 + 𝑊ℎ𝑖ℎ𝑡−1 + 𝑏𝑖) 

𝑜𝑡 = 𝜎(𝑊𝑥𝑜𝑥𝑡 + 𝑊ℎ𝑜ℎ𝑡−1 + 𝑏𝑜) 

𝑔𝑡 = 𝑡𝑎𝑛ℎ(𝑊𝑥𝑔𝑥𝑡 + 𝑊ℎ𝑔ℎ𝑡−1 + 𝑏𝑔) 

𝐶𝑡 = 𝑓𝑡 ⊙ 𝐶𝑡−1 +  𝑖𝑡 ⊙ 𝑔𝑡  

ℎ𝑡 = 𝑜𝑡 ⊙ 𝑡𝑎𝑛ℎ (𝐶𝑡) 

(2) 

By adding these components, LSTM can overcome the vanishing 

gradient problem. However, the number of parameters is 

significantly increased. Parameter comparison among three cell 

architectures will be discussed in the following subsection. 

2.2 Architecture of GRU 
An LSTM cell has much more computation workload than a basic 

RNN cell. It has 8 weight matrices and 4 bias vectors whereas a 

basic RNN cell has 2 weight matrices and one bias vector. 

Because of its complexity, a new architecture of an RNN cell 

called GRU has been proposed. In GRU, the gates in LSTM are 

merged and the cell state output is removed. GRU model 

equations are described in (3). The reset gate is denoted by rt and 

the update gate is denoted by 𝑧𝑡 . The next hidden state ℎ𝑡  is 

calculated by 𝑧𝑡 and ℎ̃𝑡, the candidate hidden state. 𝑧𝑡 determines 

how to combine the new state (ℎ̃𝑡) with the previous state (ℎ𝑡−1). 

If the 𝑧𝑡   value is 0, then ℎ̃𝑡 = ℎ𝑡which means the previous state 

does not affect the present. If 𝑧𝑡 = 1, the new hidden state will be 

the same as the previous hidden state. 

𝑟𝑡 = 𝜎(𝑊𝑥𝑟𝑥𝑡 + 𝑊ℎ𝑟ℎ𝑡−1 + 𝑏𝑟) 

𝑧𝑡 = 𝜎(𝑊𝑥𝑧𝑥𝑡 + 𝑊ℎ𝑧ℎ𝑡−1 + 𝑏𝑧) 

ℎ̃𝑡 = 𝑡𝑎𝑛ℎ(𝑊𝑥ℎ𝑥𝑡 + 𝑊ℎℎ(ℎ𝑡−1 ⊙ 𝑟𝑡) + 𝑏ℎ) 

ℎ𝑡 = 𝑧𝑡 ⊙ ℎ𝑡−1 + (1 − 𝑧𝑡) ⊙ ℎ̃𝑡 

(3) 

A GRU cell has 6 weights and 3 biases. Table I shows the number 

of parameters (weights and biases) of the three different RNN cell 

architectures, where X is the dimension of the input vector and H 

is the dimension of the hidden state. An LSTM cell and a GRU 

cell has 4 and 3 times bigger parameter sizes than the basic RNN 

cell, respectively. Since the basic cell is not recommended if the 

hidden size of a layer is big, using LSTM and GRU is inevitable.  

So, it is important to reduce the size of parameters or decrease the 

computation workload. It is hard to determine which one is better 

because the choice of the type of the RNN cell may heavily 

depend on the dataset and the corresponding task [13]. All three 

RNN architectures are described in Figure 1. In this paper, we 

choose the GRU architecture because it can achieve almost the 

same performance with a relatively smaller model size and less 

computation workload than LSTM. 

 

3. RELATED WORKS 
Many practical deep learning models employ 32-bit single 

precision floating point representation. By using the floating-point 

number representation, highly accurate computation can be 

achieved, but computation complexity is a lot higher than fixed-

point number representation. And the hardware to support 

floating-point representation is bigger and consumes more power 

than the hardware for fixed-point representation [14]. So, many 

studies have proposed to use other data format rather than 

floating-point representation. In [8], for example, they used 16-bit 

fixed-point number weights on their LSTM network and achieved 

20.7% phone error rate (PER), where the original 32-bit floating 

point network’s PER was 20.4%. They also implemented this 

network on field programmable gate array (FPGA) with pipelined 

LSTM techniques. In [5], they used 8-bit and 4-bit quantization on 

the convolution layer and the fully-connected layer of AlexNet, 

respectively, without losing accuracy. However, [8] used 

multipliers and the LSTM is composed of bigger networks than 

 

Figure 1. Structure of 3 different RNN cell architectures: (a) Basic RNN cell, (b) LSTM cell, and (c) GRU cell 

Table 1. Size of parameters in three different RNN cell 

architectures 

Model Basic LSTM GRU 

Parameter 

size 
XH + H2 + H 4*(XH + H2 + H) 3*(XH + H2 + H) 

 

 

Figure 2. Quantization of the proposed methods 

 



the GRU. In [5], extra modules were needed to decompress the 

data which was compressed with Huffman coding. 

On the other hand, [9] used 3-bit logarithmic quantization on 

AlexNet and VGG-16. They achieved 89.2% TOP-5 accuracy on 

VGG-16 using 3-bit quantization compared to 89.8% using 32-bit 

floating-point number representation. This result is very 

encouraging because they reached this accuracy by using pre-

trained weights rather than re-training. With re-training, they 

achieved 93.79% on 5-bit log quantization in CIFAR-10 whereas 

the accuracy of the 32-bit floating point representation is 94.1%. 

4. THE PROPOSED QUANTIZATION 

METHOD 

4.1 Quantization and Operation Strength 

Reduction 
In this work, we focus on reducing memory usage, and 

minimizing the amount of multiplications without any significant 

accuracy drop. Therefore, we choose the GRU cell in order to 

make the model size as compact as possible since GRU has less 

number of parameters than LSTM does. Further, to minimize the 

amount of multiplications, we replace multiplication with shift 

and add operations. Detailed explanation will follow in the next 

subsection. 

4.2 Quantization Method 
In recurrent network models, every cell in one layer shares the 

same set of weight matrices. The dimensions of weight matrices 

for input x_t and that of hidden state vector ℎ𝑡  are  𝑊𝑥 ∈
ℝ𝑋 × ℝ𝐻and 𝑊ℎ ∈ ℝ𝐻 × ℝ𝐻, respectively. The number of GRU 

units in a layer (hidden unit size) is represented as SEQ. Then, we 

can express the number of parameters of one layer of GRU 

(weights and biases), 𝑆𝑤 and the total number of elements in the 

input vectors and hidden states, 𝑆𝑖 as follows: 

𝑆𝑤 = 3(𝑋𝐻 + 𝐻2 + 𝐻) 
𝑆𝑖 = 𝑆𝐸𝑄(𝑋 + 𝐻) (4) 

Then, the total memory usage of the network would be summation 

of 𝑢 ∗ 𝑆𝑤  and 𝑣 ∗ 𝑆𝑖 where 𝑢  and 𝑣  are the average number of 

bytes to represent a value. For example, if weights and biases are 

represented in single precision floating point, u is 4. And the 

memory usage will be 4 ∗ 𝑆𝑤 . Therefore, we have two choices, 

reduce 𝑢 for 𝑆𝑤or reduce 𝑣 for 𝑆𝑖. 

The proposed method that quantizes the value of 𝑥𝑡  and ℎ𝑡  in a 

GRU network is shown in Figure 2 (a). Each time, a GRU cell 

takes quantized 𝑥𝑡  and ℎ𝑡−1 and calculates ℎ𝑡 . Before passing ℎ𝑡 

to the next cell, ℎ𝑡  represented as the 32-bit floating-point 

representation is quantized into an 8-bit fixed-point representation. 

Our customized quantization method is shown in Figure 3. We 

extract the exponent part of the floating-point representation to 

make it as a 7-bit signed integer. This roughly corresponds to 

apply a logarithm of the floating-point number with base 2. This 

method will reduce the range of exponent from -127~126 to -

64~63. However, since GRU uses sigmoid and tanh as the 

activation function, ℎ𝑡 does not exceed this range. For high 

accuracy, we take the fraction part of log2 ℎ𝑡. into account. Let 

Q(𝑥) be defined to be a function that returns n' that is the nearest 

integer to 𝑥. When log2 𝑥 where 𝑛 is integer and 0 ≤ 𝛼 < 1, Q(𝑥) 

returns 𝑛 or 𝑛 + 1. 

log2 𝑥 = 𝑛 + 𝛼 (5)  

Q(𝑥) = 𝑛′  (6) 

We have also tried to quantize weights. As shown in Figure 2 (b), 

the GRU cell gets 8-bit quantized weight matrices and 32-bit 

floating-point input vectors and hidden states. Quantization and 

rounding strategies are the same as the method shown in Figure 3 

and Figure 4. 

By doing this quantization, we can replace a floating-point 

multiplication with a set of fixed-point shifts and adds shown in (7) 

[9], where 𝐵𝑖𝑡𝑠ℎ𝑖𝑓𝑡(𝑥, 𝑦)  is the function that shifts x by y 

positions in a fixed-point data form, and 𝑄(𝑥𝑖) = 𝑛′ by (5) and (6). 

𝑊𝑇x = ∑ 𝑤𝑖 ∗ 𝑥𝑖

𝑛

𝑖

≈ ∑ 𝐵𝑖𝑡𝑠ℎ𝑖𝑓𝑡(𝑤𝑖 , 𝑛′)

𝑛

𝑖

 (7)  

Multiplication of two floating-point numbers can be approximated 

by simply adding the exponent part of the two floating-point 

numbers as described in (8). Specifically, we use the 

approximation shown in Figure 4 where 𝐸𝑥𝐴𝑑𝑑(𝑥, 𝑦)  is the 

function that adds y to the exponent part of the 𝑥. More details are 

shown in (9). 𝑛 and m are integers and 0 ≤ 𝛼, 𝛽 < 1. 

𝑊𝑇x = ∑ 𝑤𝑖 ∗ 𝑥𝑖

𝑛

𝑖

≈ ∑ 𝐸𝑥𝐴𝑑𝑑(𝑤𝑖 , 𝑛′)

𝑛

𝑖

 

log2(𝑤𝑖 ∗ 𝑥𝑖) =  log2 𝑤𝑖 + log2 𝑥𝑖 

= (𝑛 + 𝛼) + (𝑚 + 𝛽) (using (5)) 

(8)  

≈  𝑛 + 𝑚′ + 𝛼              (using (6)) (9) 

In (9), the fraction part of 𝑤𝑖 does not change, and 𝑄(𝑥𝑖) is add to 

the exponent part of 𝑤𝑖 . The sign is determined by an XOR 

operation. 

In summary, in the proposed implementation, multiplication 

operations are replaced with a series of addition and shift 

operations by applying this proposed quantization method shown 

in (8) and (9) 

5. RESULTS AND DISCCUSION 
The GRU-based RNN with the proposed quantization method is 

implemented on the Zynq UltraSCALE ZC102 FPGA board [15]. 

 

Figure 3. Customized Type Conversion. We remove bias 

and take 7 bits of exponent part except MSB. 

 

Figure 4. Approximated floating-point multiplication: 

ExAdd(wi, Q(xi)) 



The implementation is running at 100 MHz. The proposed GRU 

cells are written in C++ and synthesized using a high-level 

synthesis (HLS) tool. We use a part of the Shakespeare dataset [16] 

to evaluate the proposed method. The input vector is a sequence 

of 64-characters and the output vector is the next 64-character 

sequence. Weights and biases are pre-trained with the TensorFlow 

framework [17] and there is no re-train or fine-tuning during the 

experiments. The hardware implement on FPGA is verified by 

comparing results with a software implementation running on an 

x86 PC. The hidden unit size is 64, and the dimensions of input 

vectors and hidden states are both 25 (𝑋 = 𝐻 = 25) with 116 

batch sizes. Lastly, a fully-connected layer takes 64 hidden state 

vectors and produces the final output vector 𝑦𝑡 using one-hot 

encoding. The first hidden state ℎ0 is initialized with 1. The 

structure for the entire network is described in Figure 5. 

Implementations are compared in terms of three metrics: 

accuracies, cycle counts, and memory usage. The average 

accuracies are summarized in Table. II. The average accuracy is 

the average value of accuracies across all batch steps as shown in 

Figure 6. The cycle count will account for the execution speed. 

The memory usage is the summation of 𝑢 ∗ 𝑆𝑤 and 𝑣 ∗ 𝑆𝑖. 

PROPOSED represents the proposed method that quantizes 

hidden states and input vectors, and it achieved 90.57% average 

accuracy with 10% execution time improvement as compared to 

the conventional method (CONVENTIONAL in Table II). There is 

a 3.33% accuracy drop but PROPOSED uses 32% less memory 

than CONVENTIONAL. 

As aforementioned, we have also attempted to quantize only the 

weights as shown in Figure 2 (b), and ATTEMPT represents this 

case. Accuracies of ATTEMPT are very poor. Although 

ATTEMPT runs faster and requires less memory than the other 

two methods, the average accuracy of 22.06% is too low to get 

any meaningful result. Therefore, re-training and fine-tuning are 

needed in case of quantizing the weights.  

 

6. CONCLUSION 
In this paper, we proposed a method that quantizes the GRU 

vectors into fixed-point numbers using an 8-bit logarithmic 

quantization. By using the log-quantization, we can replace 

floating-point multiplications with a series shifts and adds. For an 

RNN with 64 hidden units, the proposed method that quantizes 

hidden states and input vectors achieved 90.57% accuracy without 

re-training. Using 8-bit quantized weights, however, decreases the 

accuracy down to 22.06%. In this case, re-training is essential. 
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