
Log-Quantization on GRU networks
Sang-Ki Park

Dept. of Electronic Engineering
Hanyang University, Seongdong-gu,

Seoul, Republic of Korea
+82-2-2220-4701

pskhanyang@gmail.com

Sang-Soo Park
Dept. of Electronic Engineering

Hanyang University, Seongdong-gu,
Seoul, Republic of Korea

+82-2-2220-4701

po092000@hanyang.ac.kr

Ki-Seok Chung
Dept. of Electronic Engineering

Hanyang University, Seongdong-gu,
Seoul, Republic of Korea

+82-2-2220-4701

kchung@hanyang.ac.kr

ABSTRACT

Today, recurrent neural network (RNN) is used in various

applications like image captioning, speech recognition and

machine translation. However, because of data dependencies,

recurrent neural network is hard to parallelize. Furthermore, to

increase network’s accuracy, recurrent neural network uses

complicated cell units such as long short-term memory (LSTM)

and gated recurrent unit (GRU). To run such models on an

embedded system, the size of the network model and the amount

of computation need to be reduced to achieve low power

consumption and low required memory bandwidth. In this paper,

implementation of RNN based on GRU with a logarithmic

quantization method is proposed. The proposed implementation is

synthesized using high-level synthesis (HLS) targeting Xilinx

ZCU102 FPGA running at 100MHz. The proposed

implementation with an 8-bit log-quantization achieves 90.57%

accuracy without re-training or fine-tuning. And the memory

usage is 31% lower than that for an implementation with 32-bit

floating point data representation.

CCS Concepts

• Hardware → High-level and register-transfer level synthesis;

Hardware accelerators • Computer systems organization →

Embedded systems; Neural networks; Heterogenous (hybrid)

system.

Keywords

CNN; AI; HW/SW Co-Design; HLS; LeNet-5; FPGA; SDSoC;

1. INTRODUCTION
Convolutional neural network (CNN) and recurrent neural

network (RNN) have proved their usefulness in various

applications. In image classification and recognition, quite a few

CNN models have proven their high accuracy [1], [2]. RNN

models are widely used in machine translation, speech recognition,

and music composition [3], [4].

However, neural network models have rapidly increased the

number of processing layers and the amount of computation to

achieve higher accuracy. The number of parameters and the size

of memory requirement are getting bigger, as well. To run these

large networks on embedded systems, computational workload

needs to be reduced so that they can run on embedded systems in

real time. Embedded systems typically have a small amount of

memory and limited processing power, and also many of them are

very sensitive to energy dissipation. Therefore, it is very important

to optimize RNN in terms of processing speed, memory usage and

power dissipation.

Many researches have been conducted to reduce the size of

parameters. There are several ways to achieve this goal; pruning,

factorization, quantization, entropy coding [5]-[9]. For example,

Deep Compression [5] uses three techniques: pruning,

quantization, and Huffman coding. They reduced the size of

parameters in VGG-16 [10] from 522MB to 11.3MB, which is 49

times smaller. And SqueezeNet [6] achieved 80.3 % Top-5

ImageNet accuracy, which is the same as AlexNet [7], with 510

times smaller model size by using Deep Compression. On the

other hand, [8] and [9] used quantization rather than compression.

[8] used a 12-bit fixed point representation on long short-term

memory (LSTM) networks and achieved only 0.3% accuracy drop

compared to a model with 32-bit floating point representation.

In this paper, we propose a logarithmic quantization on RNN,

specifically, gated recurrent unit (GRU) cell architecture to reduce

the total model size, including the amount of data transaction

between cells. We use a pre-trained model and apply this method

to input vectors, hidden states. And quantization and shift modules

are added to convert from the floating-point data type to our 8-bit

custom data type.

2. BACKGROUND

2.1 Introduction of RNN
RNN models accept an input vector sequence 𝑥 = (𝑥1; 𝑥2; … ; 𝑥𝑇)
and produce output 𝑦 = (𝑦1; 𝑦2; … ; 𝑦𝑇) over time T and each

vector has its own time stamp. In time t, RNN cell takes the

corresponding vector 𝑥𝑡 and calculates the hidden state vector, ℎ𝑡.

𝑊ℎ and 𝑊𝑥 are weight matrices for hidden states and input vectors,

respectively, and b is a bias vector.

ℎ𝑡 = 𝑡𝑎𝑛ℎ(𝑊ℎℎ𝑡−1 + 𝑊𝑥𝑥𝑡 + 𝑏ℎ) (1)

The computation of a basic RNN cell is shown in (1). It implies

that a hidden state of the current time is influenced by hidden

states of the previous times. This data dependency makes RNNs

hard to parallelize. Weights and biases are shared throughout one

layer. In perspective of weight sharing, one RNN layer with n

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights

for components of this work owned by others than the author(s) must be

honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior

specific permission and/or a fee.

Request permissions from Permissions@acm.org.
ICCIP 2018, November 2–4, 2018, Qingdao, China

© 2018 Copyright is held by the owner/author(s). Publication rights

licensed to ACM.
ACM ISBN 978-1-4503-6534-5/18/11…$15.00

http://doi.org/10.1145/3290420.3290443

cells is conceptually the same as unfolded form of one cell over n

time periods. We call this n as a hidden size of the layer.

The basic RNN cell, however, may suffer from a problem called

vanishing gradient problem; a gradient value is getting smaller

and smaller during the training. And it makes difficult to learn

contexts with long ranged dependency. Because of this, currently,

large networks commonly use LSTM [11] or GRU [12]. An

LSTM cell has 3 additional gates; forgot gate (𝑓𝑡), input gate (𝑖𝑡),

and output gate (𝑜𝑡). It also adds a new state called cell state (𝐶𝑡).

LSTM computation is described in (2). Weights and biases are

distinguished by subscripts; for example, 𝑊𝑥𝑓 is the weight for

𝑥𝑡 in a forgot gate. The operator ⊙ denotes the element-wise

product, and activation function σ is sigmoid.

𝑓𝑡 = 𝜎(𝑊𝑥𝑓𝑥𝑡 + 𝑊ℎ𝑓ℎ𝑡−1 + 𝑏𝑓)

𝑖𝑡 = 𝜎(𝑊𝑥𝑖𝑥𝑡 + 𝑊ℎ𝑖ℎ𝑡−1 + 𝑏𝑖)

𝑜𝑡 = 𝜎(𝑊𝑥𝑜𝑥𝑡 + 𝑊ℎ𝑜ℎ𝑡−1 + 𝑏𝑜)

𝑔𝑡 = 𝑡𝑎𝑛ℎ(𝑊𝑥𝑔𝑥𝑡 + 𝑊ℎ𝑔ℎ𝑡−1 + 𝑏𝑔)

𝐶𝑡 = 𝑓𝑡 ⊙ 𝐶𝑡−1 + 𝑖𝑡 ⊙ 𝑔𝑡

ℎ𝑡 = 𝑜𝑡 ⊙ 𝑡𝑎𝑛ℎ (𝐶𝑡)

(2)

By adding these components, LSTM can overcome the vanishing

gradient problem. However, the number of parameters is

significantly increased. Parameter comparison among three cell

architectures will be discussed in the following subsection.

2.2 Architecture of GRU
An LSTM cell has much more computation workload than a basic

RNN cell. It has 8 weight matrices and 4 bias vectors whereas a

basic RNN cell has 2 weight matrices and one bias vector.

Because of its complexity, a new architecture of an RNN cell

called GRU has been proposed. In GRU, the gates in LSTM are

merged and the cell state output is removed. GRU model

equations are described in (3). The reset gate is denoted by rt and

the update gate is denoted by 𝑧𝑡 . The next hidden state ℎ𝑡 is

calculated by 𝑧𝑡 and ℎ̃𝑡, the candidate hidden state. 𝑧𝑡 determines

how to combine the new state (ℎ̃𝑡) with the previous state (ℎ𝑡−1).

If the 𝑧𝑡 value is 0, then ℎ̃𝑡 = ℎ𝑡which means the previous state

does not affect the present. If 𝑧𝑡 = 1, the new hidden state will be

the same as the previous hidden state.

𝑟𝑡 = 𝜎(𝑊𝑥𝑟𝑥𝑡 + 𝑊ℎ𝑟ℎ𝑡−1 + 𝑏𝑟)

𝑧𝑡 = 𝜎(𝑊𝑥𝑧𝑥𝑡 + 𝑊ℎ𝑧ℎ𝑡−1 + 𝑏𝑧)

ℎ̃𝑡 = 𝑡𝑎𝑛ℎ(𝑊𝑥ℎ𝑥𝑡 + 𝑊ℎℎ(ℎ𝑡−1 ⊙ 𝑟𝑡) + 𝑏ℎ)

ℎ𝑡 = 𝑧𝑡 ⊙ ℎ𝑡−1 + (1 − 𝑧𝑡) ⊙ ℎ̃𝑡

(3)

A GRU cell has 6 weights and 3 biases. Table I shows the number

of parameters (weights and biases) of the three different RNN cell

architectures, where X is the dimension of the input vector and H

is the dimension of the hidden state. An LSTM cell and a GRU

cell has 4 and 3 times bigger parameter sizes than the basic RNN

cell, respectively. Since the basic cell is not recommended if the

hidden size of a layer is big, using LSTM and GRU is inevitable.

So, it is important to reduce the size of parameters or decrease the

computation workload. It is hard to determine which one is better

because the choice of the type of the RNN cell may heavily

depend on the dataset and the corresponding task [13]. All three

RNN architectures are described in Figure 1. In this paper, we

choose the GRU architecture because it can achieve almost the

same performance with a relatively smaller model size and less

computation workload than LSTM.

3. RELATED WORKS
Many practical deep learning models employ 32-bit single

precision floating point representation. By using the floating-point

number representation, highly accurate computation can be

achieved, but computation complexity is a lot higher than fixed-

point number representation. And the hardware to support

floating-point representation is bigger and consumes more power

than the hardware for fixed-point representation [14]. So, many

studies have proposed to use other data format rather than

floating-point representation. In [8], for example, they used 16-bit

fixed-point number weights on their LSTM network and achieved

20.7% phone error rate (PER), where the original 32-bit floating

point network’s PER was 20.4%. They also implemented this

network on field programmable gate array (FPGA) with pipelined

LSTM techniques. In [5], they used 8-bit and 4-bit quantization on

the convolution layer and the fully-connected layer of AlexNet,

respectively, without losing accuracy. However, [8] used

multipliers and the LSTM is composed of bigger networks than

Figure 1. Structure of 3 different RNN cell architectures: (a) Basic RNN cell, (b) LSTM cell, and (c) GRU cell

Table 1. Size of parameters in three different RNN cell

architectures

Model Basic LSTM GRU

Parameter

size
XH + H2 + H 4*(XH + H2 + H) 3*(XH + H2 + H)

Figure 2. Quantization of the proposed methods

the GRU. In [5], extra modules were needed to decompress the

data which was compressed with Huffman coding.

On the other hand, [9] used 3-bit logarithmic quantization on

AlexNet and VGG-16. They achieved 89.2% TOP-5 accuracy on

VGG-16 using 3-bit quantization compared to 89.8% using 32-bit

floating-point number representation. This result is very

encouraging because they reached this accuracy by using pre-

trained weights rather than re-training. With re-training, they

achieved 93.79% on 5-bit log quantization in CIFAR-10 whereas

the accuracy of the 32-bit floating point representation is 94.1%.

4. THE PROPOSED QUANTIZATION

METHOD

4.1 Quantization and Operation Strength

Reduction
In this work, we focus on reducing memory usage, and

minimizing the amount of multiplications without any significant

accuracy drop. Therefore, we choose the GRU cell in order to

make the model size as compact as possible since GRU has less

number of parameters than LSTM does. Further, to minimize the

amount of multiplications, we replace multiplication with shift

and add operations. Detailed explanation will follow in the next

subsection.

4.2 Quantization Method
In recurrent network models, every cell in one layer shares the

same set of weight matrices. The dimensions of weight matrices

for input x_t and that of hidden state vector ℎ𝑡 are 𝑊𝑥 ∈
ℝ𝑋 × ℝ𝐻and 𝑊ℎ ∈ ℝ𝐻 × ℝ𝐻, respectively. The number of GRU

units in a layer (hidden unit size) is represented as SEQ. Then, we

can express the number of parameters of one layer of GRU

(weights and biases), 𝑆𝑤 and the total number of elements in the

input vectors and hidden states, 𝑆𝑖 as follows:

𝑆𝑤 = 3(𝑋𝐻 + 𝐻2 + 𝐻)
𝑆𝑖 = 𝑆𝐸𝑄(𝑋 + 𝐻) (4)

Then, the total memory usage of the network would be summation

of 𝑢 ∗ 𝑆𝑤 and 𝑣 ∗ 𝑆𝑖 where 𝑢 and 𝑣 are the average number of

bytes to represent a value. For example, if weights and biases are

represented in single precision floating point, u is 4. And the

memory usage will be 4 ∗ 𝑆𝑤 . Therefore, we have two choices,

reduce 𝑢 for 𝑆𝑤or reduce 𝑣 for 𝑆𝑖.

The proposed method that quantizes the value of 𝑥𝑡 and ℎ𝑡 in a

GRU network is shown in Figure 2 (a). Each time, a GRU cell

takes quantized 𝑥𝑡 and ℎ𝑡−1 and calculates ℎ𝑡 . Before passing ℎ𝑡

to the next cell, ℎ𝑡 represented as the 32-bit floating-point

representation is quantized into an 8-bit fixed-point representation.

Our customized quantization method is shown in Figure 3. We

extract the exponent part of the floating-point representation to

make it as a 7-bit signed integer. This roughly corresponds to

apply a logarithm of the floating-point number with base 2. This

method will reduce the range of exponent from -127~126 to -

64~63. However, since GRU uses sigmoid and tanh as the

activation function, ℎ𝑡 does not exceed this range. For high

accuracy, we take the fraction part of log2 ℎ𝑡. into account. Let

Q(𝑥) be defined to be a function that returns n' that is the nearest

integer to 𝑥. When log2 𝑥 where 𝑛 is integer and 0 ≤ 𝛼 < 1, Q(𝑥)

returns 𝑛 or 𝑛 + 1.

log2 𝑥 = 𝑛 + 𝛼 (5)

Q(𝑥) = 𝑛′ (6)

We have also tried to quantize weights. As shown in Figure 2 (b),

the GRU cell gets 8-bit quantized weight matrices and 32-bit

floating-point input vectors and hidden states. Quantization and

rounding strategies are the same as the method shown in Figure 3

and Figure 4.

By doing this quantization, we can replace a floating-point

multiplication with a set of fixed-point shifts and adds shown in (7)

[9], where 𝐵𝑖𝑡𝑠ℎ𝑖𝑓𝑡(𝑥, 𝑦) is the function that shifts x by y

positions in a fixed-point data form, and 𝑄(𝑥𝑖) = 𝑛′ by (5) and (6).

𝑊𝑇x = ∑ 𝑤𝑖 ∗ 𝑥𝑖

𝑛

𝑖

≈ ∑ 𝐵𝑖𝑡𝑠ℎ𝑖𝑓𝑡(𝑤𝑖 , 𝑛′)

𝑛

𝑖

 (7)

Multiplication of two floating-point numbers can be approximated

by simply adding the exponent part of the two floating-point

numbers as described in (8). Specifically, we use the

approximation shown in Figure 4 where 𝐸𝑥𝐴𝑑𝑑(𝑥, 𝑦) is the

function that adds y to the exponent part of the 𝑥. More details are

shown in (9). 𝑛 and m are integers and 0 ≤ 𝛼, 𝛽 < 1.

𝑊𝑇x = ∑ 𝑤𝑖 ∗ 𝑥𝑖

𝑛

𝑖

≈ ∑ 𝐸𝑥𝐴𝑑𝑑(𝑤𝑖 , 𝑛′)

𝑛

𝑖

log2(𝑤𝑖 ∗ 𝑥𝑖) = log2 𝑤𝑖 + log2 𝑥𝑖

= (𝑛 + 𝛼) + (𝑚 + 𝛽) (using (5))

(8)

≈ 𝑛 + 𝑚′ + 𝛼 (using (6)) (9)

In (9), the fraction part of 𝑤𝑖 does not change, and 𝑄(𝑥𝑖) is add to

the exponent part of 𝑤𝑖 . The sign is determined by an XOR

operation.

In summary, in the proposed implementation, multiplication

operations are replaced with a series of addition and shift

operations by applying this proposed quantization method shown

in (8) and (9)

5. RESULTS AND DISCCUSION
The GRU-based RNN with the proposed quantization method is

implemented on the Zynq UltraSCALE ZC102 FPGA board [15].

Figure 3. Customized Type Conversion. We remove bias

and take 7 bits of exponent part except MSB.

Figure 4. Approximated floating-point multiplication:

ExAdd(wi, Q(xi))

The implementation is running at 100 MHz. The proposed GRU

cells are written in C++ and synthesized using a high-level

synthesis (HLS) tool. We use a part of the Shakespeare dataset [16]

to evaluate the proposed method. The input vector is a sequence

of 64-characters and the output vector is the next 64-character

sequence. Weights and biases are pre-trained with the TensorFlow

framework [17] and there is no re-train or fine-tuning during the

experiments. The hardware implement on FPGA is verified by

comparing results with a software implementation running on an

x86 PC. The hidden unit size is 64, and the dimensions of input

vectors and hidden states are both 25 (𝑋 = 𝐻 = 25) with 116

batch sizes. Lastly, a fully-connected layer takes 64 hidden state

vectors and produces the final output vector 𝑦𝑡 using one-hot

encoding. The first hidden state ℎ0 is initialized with 1. The

structure for the entire network is described in Figure 5.

Implementations are compared in terms of three metrics:

accuracies, cycle counts, and memory usage. The average

accuracies are summarized in Table. II. The average accuracy is

the average value of accuracies across all batch steps as shown in

Figure 6. The cycle count will account for the execution speed.

The memory usage is the summation of 𝑢 ∗ 𝑆𝑤 and 𝑣 ∗ 𝑆𝑖.

PROPOSED represents the proposed method that quantizes

hidden states and input vectors, and it achieved 90.57% average

accuracy with 10% execution time improvement as compared to

the conventional method (CONVENTIONAL in Table II). There is

a 3.33% accuracy drop but PROPOSED uses 32% less memory

than CONVENTIONAL.

As aforementioned, we have also attempted to quantize only the

weights as shown in Figure 2 (b), and ATTEMPT represents this

case. Accuracies of ATTEMPT are very poor. Although

ATTEMPT runs faster and requires less memory than the other

two methods, the average accuracy of 22.06% is too low to get

any meaningful result. Therefore, re-training and fine-tuning are

needed in case of quantizing the weights.

6. CONCLUSION
In this paper, we proposed a method that quantizes the GRU

vectors into fixed-point numbers using an 8-bit logarithmic

quantization. By using the log-quantization, we can replace

floating-point multiplications with a series shifts and adds. For an

RNN with 64 hidden units, the proposed method that quantizes

hidden states and input vectors achieved 90.57% accuracy without

re-training. Using 8-bit quantized weights, however, decreases the

accuracy down to 22.06%. In this case, re-training is essential.

7. ACKNOWLEDGMENTS
This work was supported by Institute for Information \&

communications Technology Promotion (IITP) grant funded by

the Korea government (MSIP) (R7119-16-1009, Development of

Intelligent Semiconductor Core Technologies for IoT Devices

based on Harvest Energy).

8. REFERENCES
[1] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun

2016. Deep Residual Learning for Image Recognition. The

IEEE Conference on Computer Vision and Pattern

Recognition (June 2016), 770-778 DOI=

https://doi.org/10.1109/CVPR.2016.90

[2] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre S., et al.

2015. Going Deeper With Convolutions. The IEEE

Conference on Computer Vision and Pattern Recognition,

(June 2015), 1-9, DOI=

https://doi.org/10.1109/CVPR.2015.7298594

[3] Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. 2014.

Sequence to sequence learning with neural networks. In

Proceedings of the 27th International Conference on Neural

Information Processing Systems - Volume 2, 3104-3112 (Dec.

2014) DOI=

https://dl.acm.org/citation.cfm?id=2969033.2969173

[4] Douglas Eck and Juergen Schmidhuber. 2002. A First Look

at Music Composition Using LSTM Recurrent Neural

Networks. Technical Report. Istituto Dalle Molle Di Studi

Sull Intelligenza Artificiale.

[5] Song Han, Huizi Mao, William J. Dally. 2016. Deep

Compression: Compressing Deep Neural Networks with

Pruning, Trained Quantization and Huffman Coding.

International Conference on Learning Representations (May

2016), DOI= https://arxiv.org/pdf/1510.00149v5.pdf

[6] Forrest N. Iandola, Song Han, Matthew W. Moskewicz,

Khalid Ashraf, William J. Dally and Kurt Keutzer. 2016.

SqueezeNet: AlexNet-level accuracy with 50x fewer

Table 2. Evaluation result comparisons

Model CONVENTIONAL PROPOSED ATTEMPT

Avg.
Accuracy

93.90% 90.57% 22.06%

Cycles 9783.26M 8857.33M 8597.28M

Cycle

ratio
1 0.91 0.88

Memory

Use
29.88 KB 20.51 KB 16.85 KB

Memory

ratio
1 0.69 0.56

Figure 5. Architecture of the proposed GRU-based RNN

Figure 6. Test accuracy curves

https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/CVPR.2015.7298594
https://dl.acm.org/citation.cfm?id=2969033.2969173
https://arxiv.org/pdf/1510.00149v5.pdf

parameters and <0.5MB model size. DOI=

https://arxiv.org/abs/1602.07360

[7] Alex Krizhevsky, Ilya Sutskever and Geoffrey E. Hinton.

2012. ImageNet Classification with Deep Convolutional

Neural Networks. Advances in Neural Information

Processing Systems (Dec. 2012), 1097-1105, DOI=

https://dl.acm.org/citation.cfm?id=2999257

[8] Song Han, Junlong Kang, Huizi Mao, Yiming Hu, Xin Li,

Yubin Li, Dongliang Xie, Hong Luo, Song Yao, Yu Wang,

Huazhong Yang, and William (Bill) J. Dally. 2017. ESE:

Efficient Speech Recognition Engine with Sparse LSTM on

FPGA. In Proceedings of the 2017 ACM/SIGDA

International Symposium on Field-Programmable Gate

Arrays (Feb. 2017), 75-84 DOI=

https://doi.org/10.1145/3020078.3021745

[9] Daisuke Miyashita, Edward H. Lee and Boris Murmann.

2016. Convolutional Neural Networks using Logarithmic

Data Representation. DOI= https://arxiv.org/abs/1603.01025

[10] Karen Simonyan and Andrew Zisserman. 2014 Very Deep

Convolutional Networks for Large-Scale Image Recognition.

DOI= https://arxiv.org/abs/1409.1556

[11] Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long Short-

Term Memory. Neural Comput. 9, 8 (November 1997),

1735-1780. DOI=

http://dx.doi.org/10.1162/neco.1997.9.8.1735
[12] Cho Kyunghyun, Bart van Merrienboer, Caglar Gulcehre,

Dzmitry Bahdanau, Fethi Bougares, Holger Schwenk, and

Yoshua Bengio. 2014. Learning Phrase Representations

using RNN Encoder-Decoder for Statistical Machine

Translation. DOI= https://arxiv.org/abs/1406.1078

[13] Junyoung Chung, Caglar Gulcehre, KyungHyun Cho and

Yoshua Bengio. 2014. Empirical Evaluation of Gated

Recurrent Neural Networks on Sequence Modeling.

Advances in Neural Information Processing Systems (Dec.

2014), DOI= https://arxiv.org/abs/1412.3555

[14] Song Han, X. Liu, H. Mao, J. Pu, A. Pedram, M. Horowitz,

W. J. Dally. 2016. EIE: Efficient Inference Engine on

Compressed Deep Neural Network. ACM/IEEE 43rd Annual

International Symposium on Computer Architecture (June

2016), 243-254, DOI= https://doi.org/10.1109/ISCA.2016.30

[15] ZCU102 Board User Guide,

https://www.xilinx.com/support/documentation/boards_and_

kits/zcu102/ug1182-zcu102-eval-bd.pdf

[16] William Shakespeare Plays Datasets,

https://ocw.mit.edu/ans7870/6/6.006/s08/lecturenotes/files/t8

.shakespeare.txt

[17] Martín Abadi, Paul Barham, Jianmin Chen et al. 2016.

TensorFlow: a system for large-scale machine learning. In

Proceedings of the 12th USENIX conference on Operating

Systems Design and Implementation (Nov. 2016), 265-283,

https://www.tensorflow.org

https://arxiv.org/abs/1602.07360
https://dl.acm.org/citation.cfm?id=2999257
https://doi.org/10.1145/3020078.3021745
https://arxiv.org/abs/1603.01025
https://arxiv.org/abs/1409.1556
http://dx.doi.org/10.1162/neco.1997.9.8.1735
https://arxiv.org/abs/1406.1078
https://arxiv.org/abs/1412.3555
https://doi.org/10.1109/ISCA.2016.30
https://www.xilinx.com/support/documentation/boards_and_kits/zcu102/ug1182-zcu102-eval-bd.pdf
https://www.xilinx.com/support/documentation/boards_and_kits/zcu102/ug1182-zcu102-eval-bd.pdf
https://ocw.mit.edu/ans7870/6/6.006/s08/lecturenotes/files/t8.shakespeare.txt
https://ocw.mit.edu/ans7870/6/6.006/s08/lecturenotes/files/t8.shakespeare.txt
https://www.tensorflow.org/

