
Optimization of FPGA-based LDPC decoder using high-
level synthesis

Geon Choi
Hanyang University

82-2-2220-4701

ggrice@hanmail.net

Kyeong-Bin Park
Hanyang University

222, Wangsimni-ro, Seongdong-gu
Seoul, Republic of Korea

82-2-2220-4701

lay1523@naver.com

Ki-Seok Chung
Hanyang University

82-2-2220-4701

kchung@hanyang.ac.kr

ABSTRACT

Low Density Parity Check (LDPC) codes are widely used in

various communication and storage systems due to outstanding

error correcting capability. In this paper, we present a Field

Programmable Gate Array (FPGA) implementation of the LDPC

decoder using High-Level Synthesis (HLS). Because HLS can

synthesize a hardware implementation from a high-level

description, it is very effective in reducing design time, and in

exploring various design alternatives. One of the biggest

advantages of FPGAs is flexibility, and therefore, HLS for FPGAs

is widely adopted as a good hardware synthesis method. In this

paper, we describe an LDPC decoder in high level language, and a

HLS tool called SDSoC is used to synthesize the decoder. The

proposed design is a serial LDPC decoder that requires smaller

amount on hardware resource and power consumption than the

conventional design. The major drawback of a serial decoder is

slow speed. To overcome such drawback, optimization techniques

such as array partitioning, loop unrolling, pipelining methods and

fixed-point conversion are applied. With the application of these

techniques, the decoding speed of the proposed implementation is

8.11 times and 2.79 times faster than that of a non-optimized

implementation and that of a software-based LDPC decoder,

respectively.

CCS Concepts

• Hardware → High-level and register-transfer level synthesis;

• Computer systems organization → System on a chip;

Keywords

Error Correcting Code; Field Programmable Gate Array; High

Level Synthesis; Low Density Parity Check; SDSoC;

1. INTRODUCTION
The Low-Density Parity Check (LDPC) code is one of forward

error correction block codes, and it corrects errors by carrying out

decoding operations iteratively [1]. LDPC has been used

communication standards such as IEEE 802.11 (Wi-Fi) and DVB-

S2 [2] [3]. Also, it has been employed in flash storage systems [4]

[5]. The structure of LDPC is defined by a matrix called Parity

Check Matrix (PCM). PCM is an ultra-sparse matrix meaning that

the number of zero elements is a lot more than the number of non-

zero elements. LDPC codes are typically decoded by a message-

passing algorithm, which iteratively exchanges messages, and the

performance of the LDPC code is known to be very close to the

Shannon limit [6].

In this paper, we propose an implementation of a serial LDPC

decoder on a System-On-Chip (SoC) platform that consists of

Central Processing Unit (CPU) and Field Programmable Gate

Array (FPGA). With rapid advances in density and performance,

FPGAs now replace Application Specific Integrated Circuit

(ASIC) in some SoC applications. Today, there are quite a few

SoC platforms that consist of multi-core CPU and high-end FPGA.

There are many studies for designing LDPC decoders on FPGAs

[7]. Most designs targeting FPGAs are synthesized from Register

Transfer Level (RTL) codes. Describing a design at RTL takes

long time and much effort. To reduce design time and effort,

Xilinx, the leading FPGA manufacturer, announced a High-Level

Synthesis (HLS) tool called SDSoC. SDSoC makes it possible for

developers to implement a design on an FPGA from high level

description such as C/C++. However, it is not straightforward to

synthesize a design of good quality from high level descriptions.

Therefore, it is very important to apply appropriate optimization

techniques. In this paper, we will address optimization techniques

that are applied to our proposed LDPC decoder to achieve high

performance.

The remainder of this paper is organized as follows. First, we

briefly address LDPC and its decoding process in Section 2. In

Section 3, we explain applied optimization methods and the

architecture of the proposed LDPC decoder. Experimental results

and analysis will be given in Section 4. Section 5 will conclude

this paper.

2. LOW DENSITY PARITY CHECK

CODES

2.1 Organization of LDPC
The structure of LDPC is defined by PCM. The number of rows in

PCM corresponds to the number of parity bits (M), and the

number of columns in PCM corresponds to the number of

transmitted bits (N). K denotes the number of data bits, which

implies that 𝑀 = 𝑁 − 𝐾. The code rate R can be defined as 𝑅 =
1 − 𝑀 𝑁⁄ and correspondingly, 0 < 𝑅 < 1. The number of non-

zero elements in a row and that in a column in PCM are called as

row degree and column degree, respectively. The row degree

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. Copyrights

for components of this work owned by others than the author(s) must be
honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior

specific permission and/or a fee.
Request permissions from Permissions@acm.org.

ICCIP 2018, November 2–4, 2018, Qingdao, China

© 2018 Copyright is held by the owner/author(s). Publication rights
licensed to ACM.

ACM ISBN 978-1-4503-6534-5/18/11…$15.00

http://doi.org/10.1145/3290420.3290441

denotes the number of variable nodes connected to a check node

and therefore, it corresponds to the check node degree. The

column degree denotes that the number of check nodes connected

to a variable node and thus, it corresponds to the variable node

degree. If all the variable node degrees are the same for each

column and if all the check node degrees are the same for each

row, corresponding LDPC code is called as regular LDPC.

Min-sum algorithm

𝐿𝑖𝑛𝑖𝑡,𝑛 : log likelihood ratio on nth node

𝐶𝑚,𝑛 : check node message from mth check node to nth variable

node

𝑉𝑚,𝑛 : variable node message from mth variable node to nth check

node

m = {1, …, M}, n = {1, …, N}

α : sign of node message

β : absolute value of node message

• Check node processing

𝐶𝑚,𝑛 = (∏ 𝛼𝑛′,𝑚

𝑛′∈Н(𝑚)\{𝑛}

) • min
𝑛′∈Н(𝑚)\{𝑛}

𝛽𝑛′,𝑚

𝛼𝑛′,𝑚 = 𝑠𝑖𝑔𝑛(𝑉𝑛,𝑚), 𝛽𝑛′,𝑚 = |𝑉𝑛,𝑚|

• Variable node processing

𝑉𝑛,𝑚 = 𝐿𝑖𝑛𝑖𝑡,𝑛 + ∑ 𝐶𝑚′→𝑛

𝑚′∈ Н(𝑛)\{𝑚}

• Hard decision and syndrome checking

𝑐̂ = ((𝐿𝑖𝑛𝑖𝑡,𝑛 + ∑ 𝐶𝑚→𝑛

𝑚 ∈ Н(𝑛)

) ≥ 0) ? 1 : 0

𝑐̂ ∙ Н𝑇 = 0

Figure 1. Computation steps in Min-sum algorithm

2.2 Decoding with LDPC Codes
LDPC codes are typically decoded by a message-passing

algorithm, which iteratively exchanges messages. There are many

different message-passing algorithms. Among them, the Sum-

Product Algorithm (SPA) is known to have the most powerful

decoding capability; however, high decoder complexity is a

serious concern. Thus, hardware implementations are based on

another method called Min-Sum Algorithm (MSA) because a

good trade-off between satisfactory error correction performance

and relatively low design complexity can be achieved. So, the

proposed LDPC decoder of this paper employs MSA. Figure 1

shows three key operations in MSA: check-node processing,

variable-node processing, and hard decision with syndrome

checking.

3. IMPLEMENATATION OF LDPC

DECODER

3.1 Optimization Methods
LDPC decoding requires a lot of iterative operations and memory

accesses, so it is very crucial to accelerate loop operations while

minimizing performance degradation due to heavy memory access.

In this paper, we apply array partitioning, loop unrolling and

pipelining.

3.1.1 Array Partitioning
Array partitioning means that a matrix is divided into small sub-

matrices and store each sub-matrix into a lane of the internal

FPGA memory block called Block Random Access Memory

(BRAM). As shown in Figure 2, the array partitioning enables

parallel memory accesses to increase memory access throughput.

In the proposed serial LDPC decoder, each variable node

operation is executed by one Variable Node Processor (VNP), and

each check node operation is executed by one Check Node

Processor (CNP). The array partitioning is not effective to

improve performance when the node degree is small, so the array

partitioning is only applied to CNP in the proposed decoder

because the variable node degree is small.

Figure 2. Check node memory architecture

in applying array partitioning

Figure 3. Applying memory relocation in check node memory

Figure 4. Partial code of memory relocation and array

partitioning

To apply array partitioning to the check node memory, data

relocation is needed. Because check nodes are irregularly

connected to variable nodes, the data should be relocated in the

order of memory accesses in the check node operation. Memory

relocation is a 2-dimensional array mapping that stores the data in

the order of variable nodes that are connected to the check node.

Figure 3 shows an example data store in the check node memory.

“V11,1” denotes a message from the 11th variable node to the 1st

check node. It is assumed that the 11th, 79th, 165th and 278th

variable nodes are connected to the 1st check node in a Tanner

graph to represent a PCM. Without data relocation, messages that

a check node needs are stored in the order that variable nodes

generate them. Then, applying array partitioning may not be

effective. Therefore, by applying memory relocation, the values

that are necessary in the nth check node operation are placed in the

accessed order on the nth row of the check node memory. The nth

row of check node memory is supposed to be accessed in the nth

check node operation and the column position of the check node

memory corresponds to the order of the variable node that is

connected to the check node. Without array partitioning, the check

node memory is accessed as many times as the check node degree

for each check node operation. Figure 4 shows partial code about

applying memory relocation and array partitioning. And figure 2

shows the check node memory architecture when memory

relocation and array partitioning are applied. After applying the

two methods, BRAMs are built as many as the check node degree,

and CNP can access to the multiple BRAMs at the same time.

Correspondingly, the memory throughput is improved.

3.1.2 Loop Unrolling
Loop unrolling is a method of reducing the number of loop

iterations by unrolling loop bodies of multiple iterations into a

body of a single iteration. Through loop unrolling, loop control

overhead is reduced. Each unrolled loop body may be processed

in parallel, and the synthesis tool automatically generates the

hardware control logic circuit. Loop unrolling is applied in a part

of VNP and the initialization phase. Then, the subtraction

operation of VNP and the memory access operation of the

initialization are performed in parallel.

3.1.3 Pipelining
Pipelining splits a process into multiple stages and executes the

stages in an overlapping fashion. if each stage is independent,

speed-up of as much as the number of stages can be achieved even

without having to add multiple sets of processing units. Thus,

pipelining is essential for serial LDPC decoders because there is

only one CNP and one VNP. Therefore, in the proposed LDPC

architecture, the initialization process, key processes of CNP and

VNP, and syndrome checking are carried out in a pipelined

manner. When the pipelining is applied, multiple memory

accesses can occur at the same time. We resolve this issue by

applying the array partitioning and memory relocation methods.

3.1.4 Fixed-Point Conversion
In general, exchanged messages in LDPC decoding are

represented by floating point numbers. Obviously, handling

floating point numbers are complicated and computationally

expensive. Therefore, floating point numbers are replaced by

fixed-point numbers in the proposed LDPC decoder. This fixed-

point may cause degradation of BER performance. So, a fixed-

point scaling factor of 32 is applied to minimize degradation and

fixed-point conversion is applied by multiplying floating point

numbers by 32.

3.2 Architecture of LDPC on an SoC

Platform
The proposed LDPC decoder is implemented on an SoC platform

called Xilinx Zynq [8]. Zynq consists of Processing System (PS)

which is an ARM dual-core cortex A9 CPU and Programmable

Logic (PL) which is Kintex-7 FPGA. PL consists of BRAM,

configurable logic blocks and Digital Signal Processor (DSP).

Configurable logic blocks are composed of Flip-Flops (FF) and

Look-Up Tables (LUTs). Figure 5 shows how functional blocks of

the proposed LDPC decoder are mapped to PS and PL on Zynq.

PS reads PCM, and it generates message addresses and then,

stores them in Dynamic Random Access Memory (DRAM).

Message addresses and message data are sent to BRAM in PL,

and PL carries out iterative operation processing. After the

decoding operation, decoded bits are sent to DRAM in PS. The

processes from the initialization to the syndrome check and the

control logic between PS and PL are automatically synthesized by

SDSoC.

Figure 5. The proposed LDPC decoder architecture

4. RESULTS AND ANALYSIS
The performance of the proposed serial LDPC decoder is

evaluated with regular LDPC codes for the IEEE 802.11 Wi-Fi

standard. The PCM has the code length of 816, the data of 408

bits and the code rate of 0.5. The operating clock frequency of PS

and that of FPGA are 1GHz and 100MHz, respectively.

4.1 Decoding Time Comparison
We compare the proposed design (PLOPT) with a non-optimized

decoder (PLNON) and a software decoder (PSSW). PLNON is a

hardware implementation with only the fixed-point conversion

applied while PLOPT is the proposed hardware implementation

with all of the aforementioned optimization methods applied. Both

decoders are described in C language. PSSW is a software decoder

where the entire execution is conducted by PS. Table 1.

summarizes the comparison results. When Signal to Noise Ratio

(SNR) is low, the decoder needs more effort to correct errors. It is

confirmed that the performance improvement increases as SNR

gets lower, and it is because the decoding iteration count increases

when SNR is low. The speed of PLOPT is 8.11 times faster than

PLNON and 2.79 times faster than PSSW when SNR is the lowest, 1.

The experimental results confirm that the proposed design is best

in terms of the decoding speed.

Table 1. Comparison of decoding time per 1 frame.

4.2 Usage of Hardware Resource
Table 2. shows the comparison of the amount of hardware

resource. Fluctuation rate is the hardware resource variation rate

of PLOPT based on PLNON. In PLOPT, the usage of BRAM, LUT

and FF are all increased compared to PLNON. The array

partitioning method causes the amount of necessary BRAM to

increase, but the size of data is decreased due to the fixed-point

conversion. The usage of LUT increases, because SDSoC

synthesizes the decoder with the way that more LUTs are utilized

when applying array partitioning and memory relocation.

Table 2. Hardware resource.

4.3 BER Performance of LDPC decoders
Figure 6 shows Bit-Error Rate (BER) performance with respect to

SNR. The maximum iteration count is set to 50 and the total

number of frames is set to 100,000 on each SNR. To find an

appropriate scaling factor for fixed-point type conversion, we

have tried several different scaling factors. The BER performance

degradations are 17.1%, 5.5%, 2.4%, and 1.4% when the scaling

factors are 4, 8, 16, and 32, respectively. To minimize the BER

performance degradation, the scaling factor is set to 32. Figure 6

shows the BER performance of the proposed decoder compared

with that of the software decoding with floating-point numbers,

and two BER curves are almost identical. So, it is confirmed that

there is almost no BER performance degradation due to the fixed-

point type conversion.

5. CONCLUSION
In this paper, we propose an LDPC decoder that is implemented

on an SoC platform. Computationally intensive part of the

decoder is synthesized by a high-level synthesis tool called

SDSoC, and mapped on an FPGA device in the SoC platform.

Optimization techniques such as array partitioning, loop unrolling,

pipelining methods and fixed-point conversion are applied.

Experimental results show that performance improvement is better

when SNR is lower. When compared to a non-optimized hardware

decoder and a software decoder, the speed-up’s of the proposed

design are up to 8.11 and 2.79, respectively.

Figure 6. BER performance comparison between fixed-point

and floating-point operation

6. ACKNOWLEDGMENTS
This research was supported by the KIAT(Korea Institute for

Advancement of Technology) grant funded by the Korea

Government(MOTIE : Ministry of Trade Industry and Energy).

(No. N0001883, HRD Program for Intelligent semiconductor

Industry)

7. REFERENCES
[1] Gallager, R. G., 1962. Low-density parity-check codes. IRE

Trans. Inf. Theory, vol. IT-8, no. 1, pp. 21-28.

[2] ETSI, 2004. Digital Video Broadcasting (DVB); Second

Generation Framing Structure, Channel Coding and

Modulation Systems for Broadcasting, Interactive Services,

News Gathering and other Broadband Satellite Applications,

EN 302 307, V1. 1. 1.

[3] IEEE P802.11n/TM-2009, 2009. IEEE standard for

information technology part 11: wireless LAN medium

access control (MAC) and physical layer (PHY)

specifications.

[4] Kong L., Wen J., Han G., Zhao S., Jiang M., and Zhao C.,

2016. Quantization and reliability-aware iterative majority-

logic decoding algorithm for LDPC code in TLC NAND

flash memory, in Proc. of 2016 8th International Conference

on Wireless Communications & Signal Processing (WCSP),

pp. 1–5.

[5] Ho K.-C., Chen C.-L., and Chang H.-C., 2016. A 520k

(18900, 17010) array dispersion LDPC decoder architectures

for NAND flash memory, IEEE Trans. Very Large Scale

Integr. Syst., vol. 24, no. 4, pp. 1293–1304.

[6] Chung S.-Y., Forney G. D., Jr., Richardson T. J., and Urbanke
R., 2001. On the design of low-density parity-check codes
within 0.0045 dB of the Shannon limit, IEEE Commun. Lett.,
vol. 5, no. 2, pp. 58_60.

[7] Hailes P., Xu L., Maunder R. G., Al-Hashimi B. M., and Hanzo
L., 2016. A survey of FPGA-based LDPC decoders, IEEE
Commun. Surveys Tuts., vol. 18, no. 2, pp. 1098_1122, 2nd
Quart.

[8] https://www.xilinx.com/products/boards-and-kits/ek-z7-
zc706-g.html, 2015.

PLOPT PLNON vs PLNON vs PSSW

1 3.687 29.919 10.296 8.11 2.79

1.5 2.472 18.729 6.344 7.58 2.57

2 1.448 8.904 3.015 6.15 2.08

2.5 1.102 5.411 1.685 4.91 1.53

3 0.968 4.128 1.219 4.27 1.26

3.5 0.920 3.377 0.958 3.67 1.04

SNR

Time(ms)
Speed up

PL
PSSW

Hardware

resource
PLOPT PLNON Difference

Fluctuation

rate

BRAM 28.5 27.5 1 3.64%

LUT 9,208 8,459 749 8.85%

FF 13,201 13,197 4 0.03%

https://www.xilinx.com/products/boards-and-kits/ek-z7-zc706-g.html
https://www.xilinx.com/products/boards-and-kits/ek-z7-zc706-g.html

