
Per-Bank Refresh with Adaptive Early Termination for High
Density DRAM

Hyun-Woong Yang
Dept. of Nanoscale Semiconductor
Engineering, Hanyang University

222, Wangsimni-ro, Seongdong-gu,
Seoul, 04763, Republic of Korea

+82-10-9483-9143

yhw0011@naver.com

Min-Kyu Lee

Dept. of Electronic and Computer
Engineering, Hanyang University

222, Wangsimni-ro, Seongdong-gu,
Seoul, 04763, Republic of Korea

+82-10-9188-8034

hanloveland@naver.com

Ki-Seok Chung

Dept. of Electronic and Computer
Engineering, Hanyang University

222, Wangsimni-ro, Seongdong-gu,
Seoul, 04763, Republic of Korea

+82-10-9056-7400

kchung@hanyang.ac.kr

ABSTRACT

DRAM, which is mainly used as main memory, requires a refresh

operation to maintain the integrity of stored data. Since memory

read and write operations to a bank are not allowed while the bank

is being refreshed, a lot of memory accesses may be blocked due

to refresh, which may lead to significant performance degradation.

Therefore, a lot of active studies to minimize this negative

performance impact of refresh have been conducted. In a refresh

scheme called per-bank refresh, the refresh unit will be one bank

rather than all banks in a rank, allowing memory access to other

banks while a certain bank in the same rank is refreshed. However,

the per-bank refresh consumes more power than all-bank refresh.

In this paper, we propose a per-bank refresh method with adaptive

early termination, which allows both the refresh period and the

size of each row group to be non-uniformly determined, to

increase the efficiency of per-bank refresh and reduce energy

consumption. By using this method, compared to the basic all-

bank refresh model, the average weighted speed increases by

about 6.4% and the energy consumption is reduced by about 51%.

CCS Concepts

• Hardware➝Dynamic memory.

Keywords

DRAM refresh; Low power DRAM; Memory architecture

1. INTRODUCTION
Dynamic random access memory (DRAM) is mainly used as main

memory in modern computing devices. DRAM is composed of a

huge array of memory cells in which data is stored. One memory

cell consists of a transistor and a capacitor, and 1-bit information

is stored by charging the capacitor. However, the stored charge

may leak away over time from the capacitor. If the amount of

leakage is significant, the stored information will be lost.

Therefore, a refresh operation, which periodically recharges the

capacitor, is required to prevent the data loss.

Refresh is indispensable in the DRAM operation, but it may cause

DRAM performance degradation. The criterion that determines

the refresh period for a particular row is the minimum time

duration that the logical value of the weakest memory cell in the

row is maintained. This time is defined as retention time in the

JEDEC-DDR standard. Thousands of refresh commands are

invoked to refresh all rows in the memory array. A set of rows

that is refreshed by one refresh command is called as row group.

Conventionally, all banks in a rank are refreshed by one refresh

command, and this method is called as all-bank refresh (ABR). In

ABR, the memory controller cannot issue a memory request to

any bank in the same rank during the refresh operation time.

Therefore, performance degradation due to blocked memory

requests during the refresh will be significant. In order to reduce

the negative performance impact caused by ABR, JEDEC

proposes an additional refresh method called per-bank refresh

(PBR) for a low power DRAM memory called LPDDR. The row

group size of PBR is the same as that of ABR divided by the bank

size. In other words, in PBR, only the rows in one bank are

refreshed at one refresh command. Therefore, the memory request

can be serviced for the banks that are not being refreshed, so that

parallelizing refreshes and accesses to banks in the same rank

becomes possible. However, since only a few rows are refreshed

in one refresh command, more refresh commands need to be

generated within the retention time. As a result, the total refresh

time increases and the power consumption due to refresh also

increases.

Commodity DRAM performs the refresh operation with the same

refresh period in all rows in accordance with the retention time of

the weakest cell. Weak cells are not controllable because they are

resulted from process-voltage-temperature (PVT) variation [1].

However, the probability of the occurrence of weak cells is

extremely small, and the retention time of most cells is longer

than 64 ms [2]. Therefore, the refresh period of all rows does not

have to be determined based on the retention time of the weak cell.

If an early termination refresh method using the above retention

time characteristic is used, it is possible to perform refresh

operations with different retention times for each row group [3].

Therefore, it is possible to avoid power dissipation and time waste

due to unnecessary refresh. However, it is impossible to access a

bank and refresh another bank in parallel because the existing

early termination refresh method is based on ABR. In this paper,

we propose a refresh method that applies the early termination

refresh method to PBR and improves the refresh power efficiency

by adaptively changing the granularity of skipping the refresh for

each row group.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. Copyrights

for components of this work owned by others than the author(s) must be
honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior

specific permission and/or a fee.
Request permissions from Permissions@acm.org.

ICCIP 2018, November 2–4, 2018, Qingdao, China

© 2018 Copyright is held by the owner/author(s). Publication rights
licensed to ACM.

ACM ISBN 978-1-4503-6534-5/18/11…$15.00

http://doi.org/10.1145/3290420.3290442

The remaining of this paper is organized as follows. In Section 2,

we explain background information that helps to understand this

paper. In Section 3, we propose a method for adaptive early

termination refresh to improve performance and power efficiency.

In Section 4, we explain experimental results. Section 5 will

conclude this paper.

2. BACKGROUND

2.1 Dram System Organization
Figure 1 shows the general structure of a DRAM system and a

bank. The channel consists of several ranks that share a memory

bus between the memory controller and the DRAM. Each rank is

made up of several banks that operate independently. In DRAM,

data is read and written by three commands: activate, read/write,

and precharge. Each bank consists of subarrays, and a subarray is

made up of a two-dimensional array of memory cells with rows

and columns. The DRAM sends a row address to the row decoder

using the activate command to select a row. Then, the data of the

selected row is copied from the memory array to a row buffer.

After the activated row is stored in the row buffer, the column

decoder executes a column access command such as read or write.

To execute a read or write command on another row that is not in

the row buffer, the precharge command must be executed in order

for the row buffer to prepare for the new activate command.

2.2 Dram Refresh
2.2.1 All-bank refresh
Since there are tens of thousands of rows in the DRAM, the

refresh latency increases when all rows are refreshed at once.

Therefore, the memory controller periodically sends several

refresh commands within the retention time. The refresh

command in a typical DRAM acts across all the banks and this

refresh method is called as all-bank refresh (ABR). In general,

ABR refreshes as many rows as the total number of rows divided

by 8192. Therefore, the refresh command generation period is 7.8

s. A refresh scheme where a set of rows is grouped and then the

set is refreshed together is called auto refresh (AR). In ABR, the

refresh command refreshes all banks in a rank, so the rank cannot

service memory requests during the refresh time.

2.2.2 Per-bank refresh
LPDDR DRAMs support an additional refresh method called per-

bank refresh (PBR) to allow concurrent memory accesses to the

DRAM during refresh [4]. The number of refresh commands to be

issued in PBR is equal to the number of refresh commands in

ABR multiplied by the number of banks. That is, in PBR, one row

group in one bank is refreshed with each refresh command. With

the support of PBR, LPDDR DRAM can process refresh

operations of specific banks and memory accesses of the other

banks in the same rank in parallel. Therefore, performance

degradation due to refresh operation is reduced in PBR. However,

the frequently issuing refresh commands will increase the total

time required for the refresh operation compared to ABR. When a

row group is refreshed, additional timing parameters such as

tRCD and tRP are required to prepare for the refresh operation.

Therefore, in the case of PBR, it takes more time to refresh all

rows in the DRAM device. As a result, the power consumption

due to refresh also increases accordingly.

2.3 Early Termination Refresh
Early termination refresh (ETR) is a refresh method that has an

advantage of reduced refresh overhead because it selectively skips

refresh operations for a row group with a long retention time. To

apply ETR, flag bits need to be added to the memory array.

Profiling on the DRAM retention time will identify which cell in

each row group has the shortest retention time. Based on the cell

that has the shortest retention time in each row group, each row

group will be classified into one of the four retention time types

[2], and the type will be marked by a 2-bit flag in the first row of

each row group. The overhead caused by the flag bits is extremely

small [3]. The added flag bits indicate the retention time of the

row group and the flag bits are refreshed every 64 ms. Every time

the flag bits are refreshed, the memory controller checks whether

the refresh of the remaining rows in the row group is necessary or

not. Since the percentage of having a weak cell in a row group is

very low, the percentage of row groups with a retention time of 64

ms is extremely small. Therefore, skipping refresh operations will

be possible for a large number of row groups to minimize refresh

overhead [2]. However, since this ETR is based on ABR,

servicing memory accesses concurrently with refresh operations is

impossible.

3. PROPOSED REFRESH SCHEME
Since ETR based on ABR cannot carry out memory accesses and

refresh operations in parallel, an ETR scheme based on PBR is

proposed in this paper. Especially, we propose a new refresh

method called adaptive early termination refresh (AETR) that can

change the refresh granularity adaptively on top of the existing

ETR method which changes the refresh period according to the

retention time of the row group. In the proposed AETR method,

the parallelism of PBR is ensured, while the efficiency of the

refresh is improved by skipping refresh operations on more rows,

leading to performance improvement and energy saving.

As the DRAM density increases, the number of rows included in

one row group increases. Correspondingly, the probability that a

weak cell is included in the row group also increases. Therefore,

to apply AETR, the base row group size is set to 1/4 of the row

group size used in general per-bank refresh. On the other hand,

since the row group size is reduced to reduce the number of row

groups having a weak cell, the refresh command is issued 32

times more often than the conventional ETR in the case of that

there are 8 banks in a rank. Because of the increased frequency of

refresh command issues, the time required to test whether refresh

will be skipped causes a significant overhead. Therefore, in AETR,

consecutive row groups that have the same retention time will be

merged into a new row group. Then, the size of row groups will

be different, and therefore, additional flag bits to indicate the size

of a row group need to be added.

To minimize the additional overhead due to the additional flag for

the row group size, the total number of bits to be used for the two

different flags is fixed to 4 bits. Then there are two possible

combinations: 2 bits for the retention time type and 2 bits for the

row group size ((2:2) scheme) or 1 bit for the time and 3 bits for

Figure 1. DRAM and bank organization.

the size ((1:3) scheme). We have conducted simulations to

determine which is better. In case of the (2:2) scheme, the

retention time is divided into 4 types of 64ms, 128ms, 256ms, and

512ms, and the size is divided into 4 types consisting of 1, 2, 4,

and 8 times of the base row group size. For the other (1:3) scheme,

the retention time is divided into 2 types of 64ms and 256ms, and

the size is divided into 8 types consisting of 1, 2, 3, 4, 8, 16, 24

and 32 times of the base row group size.

Table 1 shows the simulation result when we measure the number

of refresh cycles and that of refresh command issues during 512

ms. The number of cycles used for refresh for the (1:3) scheme is

about 65% of that used for refresh for the (2:2) scheme. Also,

during the same time period, the number of issued refresh

commands for the (1:3) scheme is 86% less than that of the (2:2)

scheme. This simulation result strongly implies that it is much

better to have more row group size options than more retention

time options. By having large row groups, it is possible to skip

refresh on a large number of rows at once. Therefore, in the

proposed method, the 4-bit flag is composed of 1-bit retention

time flag and 3-bit row group size flag.

Figure 2 is an illustration of the operation of AETR. When the

retention time bit is ‘1’, the row group will be refreshed every 64

ms, and when the bit is ‘0’, the row group will be refreshed every

256 ms. The 3-bit row group size flag indicates 8 different

allowed row group sizes: 1, 2, 3, 4, 8, 16, 24 and 32 times of the

base row group size denoted by 000 to 111, respectively.

Merging two adjacent row groups to form a bigger row group is

conducted recursively in a bottom-up fashion. Adjacent row

groups are merged only if the retention time bits of the two groups

are the same and the size of the merged row group is one of the

allowed group sizes. So in Figure 2, row groups 0~7 are merged

into a merged row group in a bottom-up fashion. Also, row groups

8~10 are merged into a merged group similarly. However these

two adjacent row groups will not be merged further because the

size of the merged row group will become 11 which is not one of

the allowed group sizes.

The first row of each row group contains the 4-bit flag, and it is

read every 64ms. A refresh controller in the DRAM device

decides whether the refresh operation will be conducted or not

according to the retention time bit. The remaining 3-bit group size

flag will be used to locate the first row of the next row group. In

the proposed design, a counter called Refresh Counter is

incremented by the size to find the first row of the next row group.

Since the occurrence probability of weak cells is very low in

practice, the size of the row group of which retention time bit is ‘1’

is very likely to be kept to be the minimum which is the size of the

basic row group . Therefore, the number of rows to be refreshed

every 64ms should be minimized.

In summary, in ATER, the size of the row group is not uniform,

and since the occurrence of weak cells is not frequent, the average

size of the row group without any weak cell will be much larger

than that of ETR. Therefore, the total number of row groups in

ATER is less than ETR. Correspondingly, the overhead to handle

refresh operations, and the number of rows to be refreshed often

will be minimized in practice.

4. EXPERIMENTAL RESULTS

4.1 Environment for experiments
Gem5 [4] and DRAMSim2 [5], widely used simulators, were used

to evaluate the performance of AETR. Also, refresh energy

consumption is measured by using retention time variation [2] and

power consumption ratio of ABR and PBR of Micron’s LPDDR

[4]. Table 2 shows simulation parameters of the DRAM device

and the processor used in the simulation. We simulated an out-of-

order processor by running Alpha benchmark binaries which were

selected from the SPEC CPU 2006 benchmark suite. A metric

called “weighted speedup”, which is the sum of the ratios of the

execution time when a benchmark program runs under multi-

program execution over the execution time when the benchmark

program runs under single-program execution [6], was used to

evaluate the performance of the proposed method. The baseline

refresh scheme is the conventional ABR scheme.

Table 1. Performance comparison

based on retention time and group size

Figure 2. Overview of Adaptive early termination refresh.

Table 2. Simulation parameter

Processor 4 cores, 2.0GHz, out-of-order, 32-entry inst
window

L1 caches 64B cache-line, 32 KB inst/data, 2-way, LRU,
2 cycles

L2 caches
64B cache-line, 512 KB, 8-way, LRU, 20
cycles

DRAM
controller

FR-FCFS scheduling policies, 64-entry request

queue, 32-entry command queue per bank

DRAM
parameter

667 MHz bus cycle, DDR3-1866 [7], 8 B-data
bus, 8 DRAM banks, latency: 13-13-13 ns
(tRP-tRCD-CL)

4.2 Experiment results
Figure 3 shows the normalized weighted speedup of each refresh

method for each benchmark. Each result is normalized to the

baseline ABR scheme (REF_ab). Three different refresh methods

are compared with REF_ab. REF_pb represents the conventional

per-bank refresh scheme [4] and ETR_ab represents the early

termination refresh [3]. AETR represents the proposed Adaptive

Early Termination Refresh. The average weighted speedup for all

the benchmark programs is 1.064 for AETR_pb, 1.029 for

REF_pb, and 1.028 for ETR_ab. The proposed method achieves

the highest average weighted speedup. Specifically, the weighted

speedup of AETR is 6.4%, 3.5% and 3.6% better than REF_ab,

REF_pb and ETR_ab, respectively.

Figure 4 shows the energy dissipation when the DRAM device

operates refresh commands. In order to measure energy

consumption, we used a method of multiplying the current value

by the time that all rows are refreshed. It is assumed that the

supplied voltages are the same. Compared with REF_ab, energy

consumption improvement of about 61% is achieved with

ETR_ab. In particular, AETR_pb improves energy consumption

by about 51% when compared to REF_ab.

From the results shown in Figure 3 and Figure 4, it is confirmed

that the proposed method not only improves performance, but also

achieves considerable reduction on energy consumption.

5. CONCLUSION
As the DRAM device density grows rapidly, time and energy

consumption due to refresh operations increase correspondingly.

Since memory read and write operations to a bank are not allowed

while the bank is being refreshed, it is very important to minimize

such performance degradation due to refresh. In this paper, we

propose a per-bank refresh method with adaptive early

termination called Adaptive Early Termination Refresh (AETR).

AETR allows both the refresh period and the size of each row

group to be non-uniformly determined in order to increase the

efficiency of per-bank refresh and reduce energy consumption. By

using the proposed AETR, the average weighted speedup is

improved by about 6.4% and the energy consumption is reduced

by about 51% compared to the conventional all-bank refresh

scheme.

6. ACKNOWLEDGMENTS
This work was supported by the Technology Innovation Program

(10076583, Development of free-running speech recognition

technologies for embedded robot system) funded By the Ministry

of Trade, Industry & Energy (MOTIE, Korea).

7. REFERENCES
[1] Kim, K., and Lee, J. 2006. A New Investigation of Data

Retention Time in Truly Nanoscaled DRAMs. IEEE Electron

Device Letter, vol. 30 (July. 2009), 846-848.

DOI=https://doi.org/10.1109/LED.2009.2023248

[2] Agrawal, A., O’connor, M., Bolotin, E., Chatterjee, N., Emer,

J., and Keckler, S. 2016. CLARA: Circular Linked-List Auto

and Self Refresh Architecture. MEMSYS’16 (Oct. 2016),

338-349. DOI= https://doi.org/10.1145/2989081.2989084

[3] Lee, M. K., and Chung, K. S. 2018. Early termination refresh

to reduce refresh overhead. IET Electronics Letter, vol. 54

(Feb. 2018), 142-144. DOI=

http://dx.doi.org/10.1049/el.2017.3843

[4] Binkert, N., Beckmann, B., Black, G., Reinhardt, S. K., Saidi,

A., Basu, A., Hestness, J., Hower, D. R., Krishna, T.,

Sardashti, S., Sen, R., Sewell, K., Shoaib, M., Vaish, N., Hill,

M. D., and Wood, D. A. 2011. The Gem5 simulator. ACM

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

N
o

rm
ai

li
ze

d
 w

ei
g
h

te
d

 s
p

ee
d

u
p

ETR_ab REF_pb AETR_pb(proposed method)

Figure 3. Normalized weighted speedup.

1

0.610

1.2

0.495

0

0.2

0.4

0.6

0.8

1

1.2

1.4

REF_ab ETR_ab REF_pb AETR_pb

N
o

rm
al

iz
ed

 e
n

er
g
y
 d

is
si

p
at

io
n

 a
t

re
fr

es
h

Energy_dissipation

Figure 4: Refresh energy dissipation

https://doi.org/10.1109/LED.2009.2023248
https://doi.org/10.1145/2989081.2989084
http://dx.doi.org/10.1049/el.2017.3843

SIGARCH Computer Architecture News, vol. 39 (May. 2011),

1–7. DOI=https://doi.org/10.1145/2024716.2024718

[5] Rosenfeld, P., Balis, E. C., and Jacob, B. 2011. DRAMSim2:

A Cycle Accurate Memory System Simulator. IEEE

Computer Architecture Letter, vol. 10 (Jan. 2011), 16-19.

DOI=https://doi.org/10.1109/L-CA.2011.4

[6] Eyerman, S., and Eeckhout, L. 2008. System-Level

Performance Metrics for Multiprogram Workloads. IEEE

Micro, vol. 28 (May. 2008), 42-53.

DOI=https://doi.org/10.1109/MM.2008.44

[7] ‘8Gb: x4, x8, x16 DDR3 SDRAM’. Available at

www.micron.com/products/datasheets, accessed 16

September 2017.

https://doi.org/10.1145/2024716.2024718
https://doi.org/10.1109/L-CA.2011.4
https://doi.org/10.1109/MM.2008.44

