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ABSTRACT 

DRAM, which is mainly used as main memory, requires a refresh 

operation to maintain the integrity of stored data. Since memory 

read and write operations to a bank are not allowed while the bank 

is being refreshed, a lot of memory accesses may be blocked due 

to refresh, which may lead to significant performance degradation. 

Therefore, a lot of active studies to minimize this negative 

performance impact of refresh have been conducted. In a refresh 

scheme called per-bank refresh, the refresh unit will be one bank 

rather than all banks in a rank, allowing memory access to other 

banks while a certain bank in the same rank is refreshed. However, 

the per-bank refresh consumes more power than all-bank refresh. 

In this paper, we propose a per-bank refresh method with adaptive 

early termination, which allows both the refresh period and the 

size of each row group to be non-uniformly determined, to 

increase the efficiency of per-bank refresh and reduce energy 

consumption. By using this method, compared to the basic all-

bank refresh model, the average weighted speed increases by 

about 6.4% and the energy consumption is reduced by about 51%.   

CCS Concepts 

• Hardware➝Dynamic memory. 
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1. INTRODUCTION 
Dynamic random access memory (DRAM) is mainly used as main 

memory in modern computing devices. DRAM is composed of a 

huge array of memory cells in which data is stored. One memory 

cell consists of a transistor and a capacitor, and 1-bit information 

is stored by charging the capacitor. However, the stored charge 

may leak away over time from the capacitor. If the amount of 

leakage is significant, the stored information will be lost. 

Therefore, a refresh operation, which periodically recharges the 

capacitor, is required to prevent the data loss.  

Refresh is indispensable in the DRAM operation, but it may cause 

DRAM performance degradation. The criterion that determines 

the refresh period for a particular row is the minimum time 

duration that the logical value of the weakest memory cell in the 

row is maintained. This time is defined as retention time in the 

JEDEC-DDR standard. Thousands of refresh commands are 

invoked to refresh all rows in the memory array. A set of rows 

that is refreshed by one refresh command is called as row group. 

Conventionally, all banks in a rank are refreshed by one refresh 

command, and this method is called as all-bank refresh (ABR). In 

ABR, the memory controller cannot issue a memory request to 

any bank in the same rank during the refresh operation time. 

Therefore, performance degradation due to blocked memory 

requests during the refresh will be significant. In order to reduce 

the negative performance impact caused by ABR, JEDEC 

proposes an additional refresh method called per-bank refresh 

(PBR) for a low power DRAM memory called LPDDR. The row 

group size of PBR is the same as that of ABR divided by the bank 

size. In other words, in PBR, only the rows in one bank are 

refreshed at one refresh command. Therefore, the memory request 

can be serviced for the banks that are not being refreshed, so that 

parallelizing refreshes and accesses to banks in the same rank 

becomes possible. However, since only a few rows are refreshed 

in one refresh command, more refresh commands need to be 

generated within the retention time. As a result, the total refresh 

time increases and the power consumption due to refresh also 

increases. 

Commodity DRAM performs the refresh operation with the same 

refresh period in all rows in accordance with the retention time of 

the weakest cell. Weak cells are not controllable because they are 

resulted from process-voltage-temperature (PVT) variation [1]. 

However, the probability of the occurrence of weak cells is 

extremely small, and the retention time of most cells is longer 

than 64 ms [2]. Therefore, the refresh period of all rows does not 

have to be determined based on the retention time of the weak cell. 

If an early termination refresh method using the above retention 

time characteristic is used, it is possible to perform refresh 

operations with different retention times for each row group [3]. 

Therefore, it is possible to avoid power dissipation and time waste 

due to unnecessary refresh. However, it is impossible to access a 

bank and refresh another bank in parallel because the existing 

early termination refresh method is based on ABR. In this paper, 

we propose a refresh method that applies the early termination 

refresh method to PBR and improves the refresh power efficiency 

by adaptively changing the granularity of skipping the refresh for 

each row group. 
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The remaining of this paper is organized as follows. In Section 2, 

we explain background information that helps to understand this 

paper. In Section 3, we propose a method for adaptive early 

termination refresh to improve performance and power efficiency. 

In Section 4, we explain experimental results. Section 5 will 

conclude this paper. 

 

2. BACKGROUND 

2.1 Dram System Organization 
Figure 1 shows the general structure of a DRAM system and a 

bank. The channel consists of several ranks that share a memory 

bus between the memory controller and the DRAM. Each rank is 

made up of several banks that operate independently. In DRAM, 

data is read and written by three commands: activate, read/write, 

and precharge. Each bank consists of subarrays, and a subarray is 

made up of a two-dimensional array of memory cells with rows 

and columns. The DRAM sends a row address to the row decoder 

using the activate command to select a row. Then, the data of the 

selected row is copied from the memory array to a row buffer. 

After the activated row is stored in the row buffer, the column 

decoder executes a column access command such as read or write. 

To execute a read or write command on another row that is not in 

the row buffer, the precharge command must be executed in order 

for the row buffer to prepare for the new activate command. 

2.2 Dram Refresh 
2.2.1 All-bank refresh 
Since there are tens of thousands of rows in the DRAM, the 

refresh latency increases when all rows are refreshed at once. 

Therefore, the memory controller periodically sends several 

refresh commands within the retention time. The refresh 

command in a typical DRAM acts across all the banks and this 

refresh method is called as all-bank refresh (ABR). In general, 

ABR refreshes as many rows as the total number of rows divided 

by 8192. Therefore, the refresh command generation period is 7.8 

s. A refresh scheme where a set of rows is grouped and then the 

set is refreshed together is called auto refresh (AR). In ABR, the 

refresh command refreshes all banks in a rank, so the rank cannot 

service memory requests during the refresh time. 

2.2.2 Per-bank refresh 
LPDDR DRAMs support an additional refresh method called per-

bank refresh (PBR) to allow concurrent memory accesses to the 

DRAM during refresh [4]. The number of refresh commands to be 

issued in PBR is equal to the number of refresh commands in 

ABR multiplied by the number of banks. That is, in PBR, one row 

group in one bank is refreshed with each refresh command. With 

the support of PBR, LPDDR DRAM can process refresh 

operations of specific banks and memory accesses of the other 

banks in the same rank in parallel. Therefore, performance 

degradation due to refresh operation is reduced in PBR. However, 

the frequently issuing refresh commands will increase the total 

time required for the refresh operation compared to ABR. When a 

row group is refreshed, additional timing parameters such as 

tRCD and tRP are required to prepare for the refresh operation. 

Therefore, in the case of PBR, it takes more time to refresh all 

rows in the DRAM device. As a result, the power consumption 

due to refresh also increases accordingly. 

2.3 Early Termination Refresh 
Early termination refresh (ETR) is a refresh method that has an 

advantage of reduced refresh overhead because it selectively skips 

refresh operations for a row group with a long retention time. To 

apply ETR, flag bits need to be added to the memory array. 

Profiling on the DRAM retention time will identify which cell in 

each row group has the shortest retention time. Based on the cell 

that has the shortest retention time in each row group, each row 

group will be classified into one of the four retention time types 

[2], and the type will be marked by a 2-bit flag in the first row of 

each row group. The overhead caused by the flag bits is extremely 

small [3]. The added flag bits indicate the retention time of the 

row group and the flag bits are refreshed every 64 ms. Every time 

the flag bits are refreshed, the memory controller checks whether 

the refresh of the remaining rows in the row group is necessary or 

not. Since the percentage of having a weak cell in a row group is 

very low, the percentage of row groups with a retention time of 64 

ms is extremely small. Therefore, skipping refresh operations will 

be possible for a large number of row groups to minimize refresh 

overhead [2]. However, since this ETR is based on ABR, 

servicing memory accesses concurrently with refresh operations is 

impossible. 

3. PROPOSED REFRESH SCHEME 
Since ETR based on ABR cannot carry out memory accesses and 

refresh operations in parallel, an ETR scheme based on PBR is 

proposed in this paper. Especially, we propose a new refresh 

method called adaptive early termination refresh (AETR) that can 

change the refresh granularity adaptively on top of the existing 

ETR method which changes the refresh period according to the 

retention time of the row group. In the proposed AETR method, 

the parallelism of PBR is ensured, while the efficiency of the 

refresh is improved by skipping refresh operations on more rows, 

leading to performance improvement and energy saving. 

As the DRAM density increases, the number of rows included in 

one row group increases. Correspondingly, the probability that a 

weak cell is included in the row group also increases. Therefore, 

to apply AETR, the base row group size is set to 1/4 of the row 

group size used in general per-bank refresh. On the other hand, 

since the row group size is reduced to reduce the number of row 

groups having a weak cell, the refresh command is issued 32 

times more often than the conventional ETR in the case of that 

there are 8 banks in a rank. Because of the increased frequency of 

refresh command issues, the time required to test whether refresh 

will be skipped causes a significant overhead. Therefore, in AETR, 

consecutive row groups that have the same retention time will be 

merged into a new row group. Then, the size of row groups will 

be different, and therefore, additional flag bits to indicate the size 

of a row group need to be added.  

To minimize the additional overhead due to the additional flag for 

the row group size, the total number of bits to be used for the two 

different flags is fixed to 4 bits. Then there are two possible 

combinations: 2 bits for the retention time type and 2 bits for the 

row group size ((2:2) scheme) or 1 bit for the time and 3 bits for 

Figure 1. DRAM and bank organization. 



the size ((1:3) scheme). We have conducted simulations to 

determine which is better. In case of the (2:2) scheme, the 

retention time is divided into 4 types of 64ms, 128ms, 256ms, and 

512ms, and the size is divided into 4 types consisting of 1, 2, 4, 

and 8 times of the base row group size. For the other (1:3) scheme, 

the retention time is divided into 2 types of 64ms and 256ms, and 

the size is divided into 8 types consisting of 1, 2, 3, 4, 8, 16, 24 

and 32 times of the base row group size. 

 

Table 1 shows the simulation result when we measure the number 

of refresh cycles and  that of refresh command issues during 512 

ms. The number of cycles used for refresh for the (1:3) scheme is 

about 65% of that used for refresh for the (2:2) scheme. Also, 

during the same time period, the number of issued refresh 

commands for the (1:3) scheme is 86% less than that of the (2:2) 

scheme. This simulation result strongly implies that it is much 

better to have more row group size options than more retention 

time options. By having large row groups, it is possible to skip 

refresh on a large number of rows at once. Therefore, in the 

proposed method, the 4-bit flag is composed of 1-bit retention 

time flag and 3-bit row group size flag.  

Figure 2 is an illustration of the operation of AETR. When the 

retention time bit is ‘1’, the row group will be refreshed every 64 

ms, and when the bit is ‘0’, the row group will be refreshed every 

256 ms. The 3-bit row group size flag indicates 8 different 

allowed row group sizes: 1, 2, 3, 4, 8, 16, 24 and 32 times of the 

base row group size denoted by 000 to 111, respectively.  

Merging two adjacent row groups to form a bigger row group is 

conducted recursively in a bottom-up fashion. Adjacent row 

groups are merged only if the retention time bits of the two groups 

are the same and the size of the merged row group is one of the 

allowed group sizes. So in Figure 2, row groups 0~7 are merged 

into a merged row group in a bottom-up fashion. Also, row groups 

8~10 are merged into a merged group similarly. However these 

two adjacent row groups will not be merged further because the 

size of the merged row group will become 11 which is not one of 

the allowed group sizes.  

The first row of each row group contains the 4-bit flag, and it is 

read every 64ms. A refresh controller in the DRAM device 

decides whether the refresh operation will be conducted or not 

according to the retention time bit. The remaining 3-bit group size 

flag will be used to locate the first row of the next row group. In 

the proposed design, a counter called Refresh Counter is 

incremented by the size to find the first row of the next row group. 

Since the occurrence probability of weak cells is very low in 

practice, the size of the row group of which retention time bit is ‘1’ 

is very likely to be kept to be the minimum which is the size of the 

basic row group . Therefore, the number of rows to be refreshed 

every 64ms should be minimized. 

In summary, in ATER, the size of the row group is not uniform, 

and since the occurrence of weak cells is not frequent, the average 

size of the row group without any weak cell will be much larger 

than that of ETR. Therefore, the total number of row groups in 

ATER is less than ETR. Correspondingly, the overhead to handle 

refresh operations, and the number of rows to be refreshed often 

will be minimized in practice. 

 

 

4. EXPERIMENTAL RESULTS 

4.1 Environment for experiments 
Gem5 [4] and DRAMSim2 [5], widely used simulators, were used 

to evaluate the performance of AETR. Also, refresh energy 

consumption is measured by using retention time variation [2] and 

power consumption ratio of ABR and PBR of Micron’s LPDDR 

[4]. Table 2 shows simulation parameters of the DRAM device 

and the processor used in the simulation. We simulated an out-of-

order processor by running Alpha benchmark binaries which were 

selected from the SPEC CPU 2006 benchmark suite. A metric 

called “weighted speedup”, which is the sum of the ratios of the 

execution time when a benchmark program runs under multi-

program execution over the execution time when the benchmark 

program runs under single-program execution [6], was used to 

evaluate the performance of the proposed method. The baseline 

refresh scheme is the conventional ABR scheme. 

 

Table 1. Performance comparison  

based on retention time and group size 

 

Figure 2. Overview of Adaptive early termination refresh. 

Table 2. Simulation parameter 

Processor 4 cores, 2.0GHz, out-of-order, 32-entry inst 
window 

L1 caches 64B cache-line, 32 KB inst/data, 2-way, LRU, 
2 cycles 

L2 caches 
64B cache-line, 512 KB, 8-way, LRU, 20 
cycles 

DRAM 
controller 

FR-FCFS scheduling policies, 64-entry request 

queue, 32-entry command queue per bank 

DRAM 
parameter 

667 MHz bus cycle, DDR3-1866 [7], 8 B-data 
bus, 8 DRAM banks, latency: 13-13-13 ns 
(tRP-tRCD-CL) 

 



 

4.2 Experiment results 
Figure 3 shows the normalized weighted speedup of each refresh 

method for each benchmark. Each result is normalized to the 

baseline ABR scheme (REF_ab). Three different refresh methods 

are compared with REF_ab. REF_pb represents the conventional 

per-bank refresh scheme [4] and ETR_ab represents the early 

termination refresh [3]. AETR represents the proposed Adaptive 

Early Termination Refresh. The average weighted speedup for all 

the benchmark programs is 1.064 for AETR_pb, 1.029 for 

REF_pb, and 1.028 for ETR_ab. The proposed method achieves 

the highest average weighted speedup. Specifically, the weighted 

speedup of AETR is 6.4%, 3.5% and 3.6% better than REF_ab, 

REF_pb and ETR_ab, respectively.  

Figure 4 shows the energy dissipation when the DRAM device 

operates refresh commands. In order to measure energy 

consumption, we used a method of multiplying the current value 

by the time that all rows are refreshed. It is assumed that the 

supplied voltages are the same. Compared with REF_ab, energy 

consumption improvement of about 61% is achieved with 

ETR_ab. In particular, AETR_pb improves energy consumption 

by about 51% when compared to REF_ab. 

From the results shown in Figure 3 and Figure 4, it is confirmed 

that the proposed method not only improves performance, but also 

achieves considerable reduction on energy consumption.  

5. CONCLUSION 
As the DRAM device density grows rapidly, time and energy 

consumption due to refresh operations increase correspondingly. 

Since memory read and write operations to a bank are not allowed 

while the bank is being refreshed, it is very important to minimize 

such performance degradation due to refresh. In this paper, we 

propose a per-bank refresh method with adaptive early 

termination called Adaptive Early Termination Refresh (AETR). 

AETR allows both the refresh period and the size of each row 

group to be non-uniformly determined in order to increase the 

efficiency of per-bank refresh and reduce energy consumption. By 

using the proposed AETR, the average weighted speedup is 

improved by about 6.4% and the energy consumption is reduced 

by about 51% compared to the conventional all-bank refresh 

scheme.  
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