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Abstract—In this paper, a new learning method to quantify
data uncertainty without suffering from performance degrada-
tion in Single Image Super Resolution (SISR) is proposed. Our
work is motivated by the fact that the idea of loss design for cap-
turing uncertainty and that for solving SISR are contradictory.
As to capturing data uncertainty, we often model the output of a
network as a Euclidian distance divided by a predictive variance,
negative log-likelihood (NLL) for the Gaussian distribution, so
that images with high variance have less impact on training.
On the other hand, in the SISR domain, recent works give
more weights to the loss of challenging images to improve the
performance by using attention models. Nonetheless, the conflict
should be handled to make neural networks capable of predicting
the uncertainty of a super-resolved image, without suffering from
performance degradation. Therefore, we propose a method called
Gradient Rescaling Attention Model (GRAM) that combines both
attempts effectively. Since variance may reflect the difficulty of
an image, we rescale the gradient of NLL by the degree of
variance. Hence, the neural network can focus on the challenging
images, similarly to attention models. We conduct performance
evaluation using standard SISR benchmarks in terms of peak
signal-noise ratio (PSNR) and structural similarity (SSIM). The
experimental results show that the proposed gradient rescaling
method generates negligible performance degradation compared
to SISR outputs with the Euclidian loss, whereas NLL without
attention degrades the SR quality.

Index Terms—Image restoration, Neural networks, Machine
learning.

I. INTRODUCTION

Single Image Super Resolution (SISR) is a task to restore

a high resolution image from a single low resolution image.

Like other computer vision tasks, deep neural networks (NNs)

and various optimization techniques have been adopted to

improve the quality of SISR [2]–[5]. Since convolutional

neural networks (CNN) have been very successful in image

processing, most existing works to solve SISR have utilized

CNNs, which are often referred to as Super Resolution CNNs

(SRCNNs). When a machine learning technique is employed

for safety-critical systems, reliability of the output of a neural

network is crucial because neural networks sometimes make

imprudent decisions with high confidence [6].

(a) (b)

(c) (d)

Fig. 1: Heteroscedastic uncertainty (d) can be estimated by

SRCNN with the predictive variance [1], but the corresponding

output (c) captures fewer details, such as edges of an object

than SRCNN without uncertainty estimation (b). The original

HR image is (a).

Hence, several methods to combine a neural network with

a probabilistic model have been proposed in various computer

vision tasks [1], [7]–[10]. These methods produce both pre-

dictions and uncertainty (or reliability) of them, by showing

that the uncertainty is not only useful to make the neural

network models more reliable but also improves the accuracy

of the neural networks. For example, in regression tasks, one

can model data uncertainty in a predictive variance, which

represents how difficult it is to predict the correct answer

from a given input. In this case, a neural network predicts the

variance of a pixel as well as the mean. The predictive variance

explicitly gets involved with the loss function—a division of

the mean squared error (MSE) between the predicted mean

and the target value by the predicted variance [1]. Thus, a

datum with a high variance, which is challenging, has less

impact during training because MSE is attenuated due to
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the high variance. Furthermore, the network trained with the

uncertainty loss tends to show better accuracy than the network

trained without uncertainty in several computer vision tasks

such as depth estimation, pixel-wise segmentation, and image

classification [1].

On the other hand, recent works in the SISR domain have

modeled both neural networks and loss functions to focus

on challenging images and pixels [4], [5], [11]–[13]. They

actively adopt attention mechanisms to scale the loss. In other

words, they have modeled neural networks and loss functions

to concentrate on high variance pixels. This is based on the

fact that there could be an infinite number of high resolution

targets for a low resolution pixel so that upscaling the image

toward the correct high resolution one is tough. Therefore, if

the loss of difficult pixels were discounted by a high variance

as the uncertainty loss function does, the quality of the super-

resolved image cannot be guaranteed. Specifically, in the case

of the data uncertainty, we observe that models trained by the

previous method [1] often fail to capture high-frequency parts

of the input image (see Fig. 1), unlike aforementioned vision

tasks.

In this paper, to avoid such degradation, a method to eval-

uate uncertainty and that for attention learning are combined

to minimize performance loss while making SRCNNs predict

uncertainty. Our proposed method, named Gradient Rescaling

Attention Model (GRAM), utilizes the predictive uncertainty

as an attention mask for the gradient of NLL. The attention

mask is a sigmoidal output of the predicted uncertainty, which

is close to 0 if the uncertainty is low, and close to 1 if the

uncertainty is high.

However, one problem still remains: we cannot directly

adjust the uncertainty loss function by the attention mask

because the attention mask cancels out the learning process for

variance estimation. That is, the attention mask is based on the

predictive variance, which can be trained when it attenuates the

MSE. To this end, we rescale not the loss, but the gradient,

which is a simple way to bypass the cancellation. Because

our proposed method rescales the gradient, and the gradient

is calculated after the loss is fixed, there is no chance for the

attention mask to neutralize the uncertainty learning.

GRAM has two advantages. First, GRAM lets SRCNNs

enjoy the fruit of both uncertainty and attention learning by

resolving them together. Second, GRAM adds negligible over-

head on training and can be easily implemented on existing

machine learning frameworks [14], [15].

Performance comparison in terms of peak signal-noise ratio

(PSNR) and structural similarity (SSIM) will show GRAM

surpasses the naı̈ve uncertainty loss [1], and produces high

resolution images with almost the same quality as the SRCNN

model that is trained only with MSE on the SISR benchmarks

(Set5,Set14, BSD100, Urban100 and DIV2K [16]).

II. BACKGROUND AND RELATED WORKS

A. Single Image Super Resolution

Single Image Super Resolution is a problem that retrieves

a high resolution (HR) image from a downsampled low

resolution (LR) image. Since convolution neural networks

achieve great success in image processing, several methods

based on deep CNNs have tried to solve SISR. Dong et al.

[2] proposed an SRCNN model to upscale LR images by

competing against the non-neural network methods with a

large margin. Numerous methods have been proposed with

machine learning techniques such as generative adversarial

networks (GAN) and attention mechanisms [3]–[5], [11]–[13].

Those methods typically train CNNs by the Euclidian dis-

tance, such as mean squared error (MSE) with a loss function

to match the super-resolved image ISR and the original high

resolution image IHR. The formal expression for training an

SRCNN model is:

LSR =
1

2N

N∑
i=1

‖IHR
i − ISR

i ‖2, (1)

where ISR = f(ILR) and f is an arbitrary upscaling function,

which is commonly a neural network.

Although CNNs and other optimization techniques have

made significant progress in SISR, finding the exact HR image

from a lossy LR image remains unsolved because the problem

is notoriously ill-posed. For instance, for a given LR image

ILR ∈ R
H′×W ′×3 and an HR image IHR ∈ R

H×W×3, the

super-resolved (SR) image ISR ∈ R
H×W×3 usually has an

equal or a higher dimension than ILR since H ′ ≤ H and

W ′ ≤ W . This lets us solve the seriously ill-posed inverse

problem, which there can be several answers from one input—

the existence eventually increases the natural variance of the

SR prediction.

B. Modeling uncertainty in computer vision tasks

Two types of uncertainty are introduced in this section:

epistemic uncertainty and heteroscedastic (aleatoric) uncer-

tainty [1]. Epistemic uncertainty explains uncertainty within

a neural network. Moreover, it can be estimated by the

variance of outputs from a Bayesian Neural Network (BNN)—

a neural network with stochastic weights. Given a dataset

X = {x1,x2, . . . ,xN}, Y = {y1,y2, . . . ,yN}, and weights

of a neural network which are drawn from a prior distribution,

for example W ∼ N (0, I), training BNNs is a process

that a weight posterior distribution p(W|X,Y) is fitted by

a tractable variational distribution q∗θ(W) which is parameter-

ized by θ. Since the weights are sampled from the probability

distributions, the variance of the outputs can be estimated

through Monte Carlo samplings. However, quantifying epis-

temic uncertainty through an approximated BNN needs a large

number of samples, leading to significantly increasing time for

training and prediction.

On the contrary, heteroscedastic uncertainty demonstrates

uncertainty within data—hence, it is also known as data

uncertainty. Also, it is input-dependent so that it represents

how much a given input is ambiguous, whereas homoscedastic

uncertainty is invariant to inputs. That is, in SR, the het-

eroscedastic uncertainty goes high if a low resolution input

image contains high frequency components such as edges

of an object or complicated patterns. An advantage of the
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Fig. 2: SRCNN and the GRAM training scheme. In GRAM, the log variance of each pixel is transformed to attention mask

sigmoid(s(ISR
i )). Then the gradient of uncertainty loss LMLE (3) is rescaled by saliency matrix Λ.

heteroscedastic uncertainty is that the evaluation is relatively

simple compared to the epistemic uncertainty, which can be

done by performing maximum likelihood estimation (MLE)

on a Gaussian distribution with an input-dependent predictive

variance. We no longer approximate a weight posterior dis-

tribution p(W|X,Y), but the variance is directly quantified

from deterministic weights. Simply speaking, we add the final

layer, which predicts the variance of the output, σ(x)2. See

Fig. 2. The loss function for training the neural network with

the heteroscedastic uncertainty on MLE is:

LMLE =
1

N

N∑
i=1

1

2σ(xi)2
‖yi − f(θ;xi)‖2 + 1

2
log σ(xi)

2,

(2)

where N is the number of batches times the number of pixels

of outputs. The loss function in (2) is from the negative log-

likelihood of a Gaussian distribution N (yi, σ(xi)
2). Also,

(2) demonstrates that the predicted variance attenuates the

Euclidian loss on each pixel, which leads (2) to a learned

attenuation loss. For numerical stability, we can change the

output for the predicted uncertainty from variance σ(x)2 to

log variance s = log σ(x)2. Hence, (2) becomes:

LMLE =
1

N

N∑
i=1

1

2
exp(−si)‖yi − f(θ;xi)‖2 + 1

2
si, (3)

which is identical to (2).

Interestingly, the heteroscedastic uncertainty and the epis-

temic uncertainty are often very similar to each other so

that one can model the other when it is explicitly modeled

[1]. Since the heteroscedastic uncertainty is much easier to

estimate and to learn than the epistemic uncertainty, we

consider only the heteroscedastic uncertainty in this paper.

C. Attention model in computer vision

In computer vision, an attention model is often used to let

the training focus on the region of interest. For example, one

can utilize the edge information as an explicit attention mask

to enhance the capability of SRCNN on the edge of an object

[11]. The attention mask should calibrate the loss between

the target and the prediction in a pixel-by-pixel manner. Also,

there can be an implicit attention model that calibrates the

intermediate features of neural networks by using Residual

Networks [17] or channel-wise attention [18]. Recent works

have used attention model in both implicit and explicit ways

by Residual Networks [4], [11], [13], a second-order attention

network [12] or channel-wise attention [5]. However, these

architectures contain complicated paths and modules, limiting

them to be deployed in practice.

III. GRADIENT RESCALING ATTENTION MODEL

The main objective of this paper is to make the SRCNN

model predict both SR images and the corresponding variance.

Although previous works that utilized the predictive variance

to capture uncertainty have accomplished a state-of-the-art per-

formance in many fields of computer vision, these approaches

may not provide an effective solution for the SISR problem.

Therefore, in this paper, a new method to embed an ability to

predict uncertainty to the SISR problem is proposed.

A. Loss attenuation problem in SISR

In (2) and (3), the predicted variance of a pixel attenuates

the Euclidian loss with respect to its degree. A high variance of

a pixel discounts the corresponding loss. Although it improves

the accuracy of the model in simple regression tasks that have

the same or lower dimensional outputs compared to the inputs,

we observe that this learning scheme is not suitable for SISR

mainly because the quality of the predicted high resolution

(HR) image goes unacceptably low. In Fig. 1, the predicted

HR image cannot generate patches with high variances, such

as edges of an object, compared to the prediction from the

network, which is trained by only MSE (without heteroscedas-

tic uncertainty). We claim that this is mainly because the

SISR problem is ill-posed, as aforementioned in Section II-A.

Therefore, in the SISR problem, the most cumbersome and

challenging patches contain high frequency data of which

variance is relatively higher than low frequency data. The main

objective of designing a good SRCNN model with an efficient
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training scheme is to successfully upscale high frequency and

challenging image patches with rich details. This is why recent

works have focused on high frequency parts by applying

attention masks [4], [5], [11]–[13]. Accordingly, unlike the

regression problem in which one input has an answer, pixels

with high variances might not be attenuated; it should be

considered with much attention, instead.

B. Turning attenuation into attention: Gradient rescaling

In this section, we propose a simple yet effective algo-

rithm to quantify uncertainty in SISR. Unlike conventional

approaches for uncertainty estimation, we suggest that a more

significant weight is put on the pixels with higher uncertainty

than the pixels with lower uncertainty. In addition, an attention

mask Λ that scales the gradient of the individual pixel with

respect to its variance is employed to switch (3) from a learned

attenuation loss to learned attention. To achieve this, we reuse

the log variance of pixels by putting it into a sigmoidal

function:

Λ = sigmoid(s) =
1

1 + e−s

=
σ(ISR)2

1 + σ(ISR)2
,

where si = log σ(ISR
i )2, the log variance of the predicted SR

image. Each element of attention masks Λ has a value close

to one or zero, if the variance of the corresponding pixel is

high and low enough, respectively.

By leveraging the fact that attention matrix Λ implies the

difficulty of each pixel, we introduce a novel attention model,

Gradient Rescaling Attention Model (GRAM), which rescales

the gradient of LMLE with respect to Λ. For a given weight

metrix in a neural network θ, we define an arbitrary loss

gradient ∇θLGRAM. To estimate ∇θLGRAM, the attention

matrix is applied to the gradient of (3) by the Hadamard

product (�):

∇θLGRAM ←− Λ�∇θLMLE. (4)

The attention matrix Λ rescales gradient ∇θLMLE. Therefore,

the gradient of a high variance pixel has more impact on

updating W than that of a low variance pixel. All we need to

change the uncertainty loss into GRAM are sigmoid operations

and multiplications; the overhead of GRAM compared to the

total training procedure is negligible.

C. Why gradient rescaling?

When reusing the log variance as the attention, log variance

s and attention matrix Λ themselves should not lose their

identity. That is, if an attention mechanism affects the gradient

estimates of the log variance or in the opposite way, one of

two may be canceled out because Λ = σ(ISR)2

1+σ(ISR)2
behaves

oppositely to exp(−s) = 1
σ(ISR)2

: the latter decreases while

the former increases when the variance goes high. Suppose

that Λ = σ(ISR)2

1+σ(ISR)2
is directly scales the MLE loss (2). Then

the pixel-wise loss becomes:

Λ
( 1

σ(ISR)2
‖IHR − ISR‖2 + log σ(ISR)2

)

=
1

1 + σ(ISR)2
‖IHR − ISR‖2 + σ(ISR)2 log σ(ISR)2

1 + σ(ISR)2
.

(5)

Since the Euclidian loss term is rescaled by 1
1+σ(ISR)2

, the

attenuation becomes less significant than (2) but there is

no attention mechanism. Furthermore, the biased variance

estimates could make the model harder to fit the original

likelihood.

However, GRAM modifies the gradient of LMLE. Note that

the attention mask Λ is not differentiated because it is involved

in the learning process after the loss is differentiated. Thus, it

preserves both the attention effect and variance estimates.

Moreover, GRAM can be easily implemented in existing

deep learning frameworks [14], [15]. In practice, one can

implement GRAM by Hadamard multiplication of Λ with

LMLE (3). It implies that a deep learning framework of Λ is

not going to be differentiated when calculating the gradient1.

IV. EXPERIMENTS

A. Datasets

We use four standard benchmark datasets (Set5, Set14,

BSD100, and Urban100) and a newly proposed high resolution

image dataset (DIV2K) for experiments. We train SRCNNs

based on the SRResNet [3] network with the DIV2K training

set, and then test them with the five benchmarks. We use the

validation set on the DIV2K dataset because the test set is not

available.

B. Implementation details

We use a similar architecture of SRResNet in [3], except

for the last convolution layer. The last layer of our SRCNN

is duplicated: one for the SR image and the other for the log

variance. Fig. 2 illustrates the overall configuration. Specifi-

cally, we use a kernel size of 9 for non-residual convolution

layers and 3 for residual blocks. The Leaky ReLU function is

assigned for activations. We also use the pixel shuffling used in

[3] to upscale the intermediate feature map. We set the number

of residual blocks M as 16 and the number of channels of

the intermediate feature map as 64. SRResNet is designed for

predicting a ×4 upscaled SR image. We implement SRResNet

on our framework for fair comparisons.

Further, for all experiments, we use 16 randomly cropped

96× 96 RGB images from the DIV2K training dataset as the

target HR image minibatch during training. Then, we produce

16 24× 24 LR patches with the bicubic interpolation. During

preprocessing, we scale HR patches from -1 to 1 and LR

patches from 0 to 1. All training minibatches are randomly

flipped and rotated in 90, 180, and 270 degrees for data

1Commonly used deep learning frameworks provide this function. For
example, in Tensorflow [14], the notification function is tf.stop gradient().
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(a) 0869 from DIV2K (b) Heteroscedastic uncer-
tainty (GRAM)

(c) HR patch (d) SRResNet
[3]

(e)
SRResNet-
MLE

(f) SRResNet-
GRAM

(g) MLE un-
certainty

(h) GRAM
uncertainty

(i) img 046 from Urban100 (j) Heteroscedastic uncer-
tainty (GRAM)

(k) HR patch (l) SRResNet
[3]

(m)
SRResNet-
MLE

(n)
SRResNet-
GRAM

(o) MLE un-
certainty

(p) GRAM
uncertainty

Fig. 3: Comparison of ×4 results on DIV2K (a-h) and Urban100 (i-p) from SRResNet [3], SRResNet-MLE and

SRResNet-GRAM. In the uncertainty map, the brighter, the higher uncertainty. Best viewed in zoom and color.

TABLE I: PSNR and SSIM evaluation. Presented in the form of PSNR(dB)/SSIM and the performance difference from

SRResNet. SRResNet∗ refers to our implementation of the baseline SRResNet [3].

Dataset Bicubic SRResNet∗ SRResNet-MLE SRResNet-GRAM (Ours)
Set5 28.42/0.8099 31.87/0.8885 31.43/0.8834 (-0.44/-0.0051) 31.82/0.8880 (-0.05/-0.0005)
Set14 26.00/0.7025 28.31/0.7749 27.98/0.7680 (-0.33/-0.0069) 28.24/0.7734 (-0.07/-0.0015)

BSD100 25.96/0.6692 27.48/0.7332 27.25/0.7260 (-0.23/-0.0072) 27.45/0.7313 (-0.03/-0.0019)
Urban100 23.14/0.6583 25.86/0.7766 25.21/0.7555 (-0.65/-0.0211) 25.68/0.7709 (-0.18/-0.0057)

DIV2K [16] 28.09/0.7740 30.26/0.8335 29.87/0.8252 (-0.39/-0.0083) 30.15/0.8312 (-0.09/-0.0023)

augmentation. An adaptive learning rate method called Adam
Optimizer is chosen with β1 = 0.9, β2 = 0.99. We train all

networks with a learning rate of 0.0001 and 2×105 iterations

and additional 105 iterations with a learning rate of 0.00001.

C. Quantitative comparison

We conduct the evaluation of PSNR and SSIM on five

datasets: Set5, Set14, Urban100, BSD100 and DIV2K [16].

The baseline for the quantitative comparison is SRResNet,

which is trained by the MSE loss LSR (1). We will refer

SRResNet-MLE as the SRResNet which is trained by uncer-

tainty loss LMLE (3), and SRResNet-GRAM as the SRResNet

which is trained by the GRAM loss (4). First, we estimate how

much performance is degraded by (3). For Set5, the mean

PSNR and SSIM values of the baseline SRResNet are 31.87

dB and 0.8885, respectively. However, the respective mean

PSNR and SSIM values of SRResNet-MLE are 31.43 dB

and 0.8834. Similarly, SRResNet-MLE shows the worst per-

formances for all benchmarks. We suppose that the uncertainty

loss makes the neural network learn less from challenging data.

Strikingly, the performance metrics of SRResNet-GRAM are

the as same level as those of SRResNet—the performance

differences are negligible compared to other models in all

benchmarks. The results confirm that our method does not suf-

fer from performance loss while predicting the heteroscedastic

uncertainty, and are summarized in Table I.

D. Qualitative comparison

Visual comparison of the predicted mean of ×4 SR results

shows much insight—SRResNet-MLE has difficulty in up-

scaling high frequency patches. In Fig. 3 (e), the upscaled cat’s

mustaches are distorted. Also, Fig. 3 (m) exposes hazy check
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(a) 0845 from DIV2K (b) MLE

(c) Loss rescaling (d) Gradient rescaling

Fig. 4: Log variance of (a) 0845 from DIV2K, (b) predicted

by SRResNet-MLE, (c) loss rescaling attention, and (d)

SRResNet-GRAM.

patterns compared to Fig. 3 (l). However, SRResNet-GRAM
preserves those challenging regions at the same level as

SRResNet—Fig. 3 (f) and (n) contain sharper details than Fig.

3 (e) and (m), respectively. These confirm that the ∇θLGRAM

can produce a better model than the conventional attenuation

loss.

Further, we have investigated how SRResNet-MLE and

SRResNet-GRAM capture uncertainty in SISR. Both models

predict the variance of burdensome pixels as high while

predicting the variance of more accessible parts of images

such as backgrounds or smooth textures as low. For instance,

the predicted variance of the cat’s front feet in Fig. 3 (b)

is lower than the cat’s body and face because the feet are

out of focus and blurred than other parts. For this reason,

GRAM can capture the heteroscedastic uncertainty while it

uses uncertainty as the attention.

We also compare GRAM to the loss rescaling attention (5)

to investigate what if attention mask Λ is directly involved

in the training loss. As we expected in III-C, the SRResNet

model which is trained by the loss rescaling attention captures

uncertainty imprecisely. In Fig. 4, (b) and (d) are akin to

each other, where the result from the loss rescaling attention

shows unnecessarily higher uncertainty on low variance image

patches (the bottom left and the bottom right corners of

(a)). Assuming that the uncertainty presented in 4 (b) is

accurate, our proposed gradient rescaling method predicts data

uncertainty much better than the loss rescaling.

V. CONCLUSION

In this paper, we proposed a learning method to quantify

data uncertainty without suffering from performance degra-

dation in Single Image Super Resolution (SISR). Since the

conventional uncertainty loss function is designed to attenuate

the Euclidian distance of pixels with high predictive uncer-

tainty, we claimed that the primary source of the problem

is the attenuation mechanism that is not appropriate for ill-

posed inverse problems such as SISR. To resolve the issue,

we proposed a new attention model that rescales the gradient

of the conventional uncertainty loss. The experimental results

verify that our method maintains the quality of SISR results

compared to the loss function without uncertainty while con-

firming that the uncertainty loss without attention deteriorates

the SISR quality.

ACKNOWLEDGMENT

This research was funded and conducted under �the Com-

petency Development Program for Industry Specialists� of

the Korean Ministry of Trade, Industry and Energy (MOTIE),

operated by Korea Institute for Advancement of Technology

(KIAT). (No. N0001883, HRD program for Intelligent semi-

conductor Industry)

REFERENCES

[1] A. Kendall and Y. Gal, “What uncertainties do we need in bayesian
deep learning for computer vision?” in Advances in neural information
processing systems, 2017, pp. 5574–5584.

[2] C. Dong, C. C. Loy, K. He, and X. Tang, “Image super-resolution using
deep convolutional networks,” IEEE transactions on pattern analysis
and machine intelligence, vol. 38, no. 2, pp. 295–307, 2015.

[3] C. Ledig et al., “Photo-realistic single image super-resolution using a
generative adversarial network,” in Proceedings of the IEEE conference
on computer vision and pattern recognition, 2017, pp. 4681–4690.

[4] J.-H. Kim, J.-H. Choi, M. Cheon, and J.-S. Lee, “Ram: Residual
attention module for single image super-resolution,” arXiv preprint
arXiv:1811.12043, 2018.

[5] W.-Y. Lee, P.-Y. Chuang, and Y.-C. F. Wang, “Perceptual quality
preserving image super-resolution via channel attention,” in ICASSP
2019-2019 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP). IEEE, 2019, pp. 1737–1741.

[6] S. G. Finlayson, H. W. Chung, I. S. Kohane, and A. L. Beam, “Ad-
versarial attacks against medical deep learning systems,” arXiv preprint
arXiv:1804.05296, 2018.

[7] B. Lakshminarayanan, A. Pritzel, and C. Blundell, “Simple and scalable
predictive uncertainty estimation using deep ensembles,” in Advances in
Neural Information Processing Systems, 2017, pp. 6402–6413.

[8] T. DeVries and G. W. Taylor, “Learning confidence for out-
of-distribution detection in neural networks,” arXiv preprint
arXiv:1802.04865, 2018.

[9] A. Malinin and M. Gales, “Predictive uncertainty estimation via prior
networks,” in Advances in Neural Information Processing Systems, 2018,
pp. 7047–7058.

[10] K. Lee, H. Lee, K. Lee, and J. Shin, “Training confidence-calibrated
classifiers for detecting out-of-distribution samples,” arXiv preprint
arXiv:1711.09325, 2017.

[11] Y. Liu et al., “An attention-based approach for single image super res-
olution,” in 2018 24th International Conference on Pattern Recognition
(ICPR). IEEE, 2018, pp. 2777–2784.

[12] T. Dai, J. Cai, Y. Zhang, S.-T. Xia, and L. Zhang, “Second-order
attention network for single image super-resolution,” in Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition,
2019, pp. 11 065–11 074.

[13] Y. Zhang et al., “Image super-resolution using very deep residual
channel attention networks,” in Proceedings of the European Conference
on Computer Vision (ECCV), 2018, pp. 286–301.

[14] M. Abadi et al., “TensorFlow: Large-scale machine learning on
heterogeneous systems,” 2015, software available from tensorflow.org.
[Online]. Available: http://tensorflow.org/

[15] A. Paszke et al., “Automatic differentiation in PyTorch,” in NIPS Autodiff
Workshop, 2017.

[16] R. Timofte, E. Agustsson, L. Van Gool, M.-H. Yang, and L. Zhang,
“Ntire 2017 challenge on single image super-resolution: Methods and
results,” in Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition Workshops, 2017, pp. 114–125.

[17] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2016, pp. 770–778.

[18] J. Hu, L. Shen, and G. Sun, “Squeeze-and-excitation networks,” in
Proceedings of the IEEE conference on computer vision and pattern
recognition, 2018, pp. 7132–7141.

13


