
Mitigating Row-hammering by Adapting the
Probability of Additional Row Refresh

Jeonghyun Woo
Department of ECE
Hanyang University

Seoul, Korea
jhwoo1007@hanyang.ac.kr

Ki-Seok Chung*
Department of ECE
Hanyang University

Seoul, Korea
kchung@hanyang.ac.kr

Abstract—Continuous scaling-down of the DRAM manufac-
turing process technology has achieved a dense chip capacity
with a low cost-per-bit. On the other hand, it has introduced
a new reliability problem called row-hammering, in which, in
case that a certain row is activated too frequently, one or more
bits in the adjacent rows are unintentionally corrupted. It is
crucial to address row-hammering errors because they not only
can be exploited by a malicious attack for modern computing
systems but also may occur in general applications stored in
a highly scaled-down DRAM. Even if several methods have
been proposed to resolve row-hammering, existing solutions have
limited capability to prevent row-hammering from occurring.
Hence, a more robust solution for row-hammering is necessary.

In this paper, we propose a novel row-hammering mitigation
mechanism, called Adaptive-probabilistic Additional Row Re-
fresh (AARR). The main observation exploited by the proposed
method is that each memory access does not have an equal degree
of threat to cause row-hammering: accessing a row that has
been frequently activated is much vulnerable to row-hammering
rather than a barely activated row. In AARR, a small table
and a few logic blocks are added to keep track of the threat
level that causes row-hammering. Then, one of the adjacent rows
of an accessed row is refreshed with an adaptive probability
that corresponds to the threat level of that memory access. Our
evaluation results show that the proposed method renders the
most reliable protection against row-hammering with the lowest
overhead on performance and energy compared to two well-
known existing solutions.

Index Terms—DRAM, row-hammering, probability-based, ag-
gressor row, victim row, reliability, security

I. INTRODUCTION

Dynamic Random Access Memory (DRAM), which con-
sists of a capacitor and an access transistor, has been used as
the main memory of modern computing systems for a long
time. Continuous scaling-down of the DRAM manufacturing
process technology has achieved a very dense DRAM chip ca-
pacity, yet the reliability of DRAM cells has been significantly
exacerbated. Row-hammering (RH) is regarded as one of the
most severe problems in today’s DRAMs [1].

RH is a phenomenon in which, in case that a certain row is
activated too frequently, one or more bits in the adjacent rows
are unintentionally corrupted. The row that is activated too
frequently is called an aggressor row, and the adjacent rows are
called victim rows. This problem occurs because the interfer-
ence of electromagnetic coupling (crosstalk) between DRAM

cells gets worse due to a small distance between adjacent cells.
As shown in prior research, RH can be exploited to attack
modern computing systems intentionally [2]–[4]. Moreover,
since RH becomes much worse as the DRAM manufacturing
process technology gets ultra-fine, not only modern computing
systems become more vulnerable to malicious attacks but
also inadvertent data-flips are likely to happen in general
applications [5]. Thus, preventing RH from occurring is very
crucial for the reliability of the main memory system.

One naive solution is to refresh every DRAM cell much
frequently. Even though it does not require additional hardware
or software support, increasing the refresh rate of all DRAM
cells incurs significant performance and energy overheads [6],
[7]. Furthermore, several works claim that this method is
insufficient for the RH avoidance [1], [4]. To deal with RH
much efficiently, prior studies have proposed two kinds of
hardware-based solutions. First, counter-based schemes have
been proposed. By using the counter, they refresh the row
before the RH threshold value that corresponds to the number
of accesses that causes RH, is reached [5], [8], [9]. This
approach has an obvious concern that too many counters may
be required for a high-density DRAM. The other type of so-
lutions is probability-based methods. Probabilistic approaches
are attractive in terms of the area because they mitigate RH
by utilizing a few pseudo-random number generators (PRNG).
For example, PARA [1] alleviates RH by additionally refresh-
ing one of the contiguous rows of an activated row with a fixed
probability. This approach is effective only when the DRAM
manufacturing process is not highly scaled-down, which is not
the case in general. The limitations of the approaches of the
two types will be discussed in Subsection II-C in detail.

In this paper, we propose a novel RH mitigation
method, called Adaptive-probabilistic Additional Row Refresh
(AARR). AARR is based on a key observation that every
memory access has a different degree of threat for RH. In other
words, accessing an infrequently activated row is much safer
to RH than an access to a repeatedly activated row. In AARR,
a small table and a few logic blocks are added to monitor
the level of risk causing RH, and one of the contiguous rows
of an accessed row is refreshed with a different probability,
according to the threat level of the memory access. Extensive
evaluations on real workloads and synthetic workloads (which



are generated based on the previous attack scenarios [2]–[4])
prove that our method provides the most reliable protection
against RH with the lowest overhead.

II. BACKGROUND AND MOTIVATION

A. DRAM Refresh

The charge stored in a DRAM cell is not persistent because
the capacitor in a DRAM cell leaks over time. The minimum
time that a DRAM cell can maintain the stored charge is
called retention time. To ensure data integrity, DRAM must
perform periodic refreshes to restore the charge of DRAM
cells within the retention time. The DDR4 DRAM specifica-
tion [10] defines the retention time as 64ms. Refreshing a cell
can be carried out by activating a DRAM row that contains
the cell. When accessing the row, the DRAM sense-amplifier
refreshes every cell of the row. In modern DRAM systems
typically employs a refresh scheme called auto-refresh to
guarantee data integrity. In auto-refresh, the memory controller
periodically issues 8192 refresh commands with an interval
of 7.8µs (tREFI) during the retention time (64ms). When
a DRAM device receives a refresh command, an internal
refresh controller automatically refreshes a bunch of rows by
activating them.

B. Row-hammering

As the DRAM devices are scaled-down, cells are ex-
posed more to the intervention of electromagnetic coupling
(crosstalk) between cells. As a result, a new reliability problem
that, in case that a certain row is activated too frequently,
one or more bits in the adjacent rows are unintentionally
corrupted [1]. The row that is activated too frequently is called
an aggressor row, and the adjacent rows are called victim
rows. This problem, known as row-hammering (RH), has
gathered significant concerns because RH can be exploited by
intentional malicious attacks. Indeed, several previous works
[2]–[4] crash modern computing systems by exploiting RH.
Unfortunately, since RH becomes more severe as the DRAM
manufacturing process technology is ultra-fine, the future
commodity DRAMs are expected to become more vulnerable
to malicious attacks and suffer from inadvertent data-flips in
general applications as well [8].

C. Existing Solutions and Their Limitations

One naive solution is to refresh every DRAM cell much
frequently. Even though it does not require additional hardware
or software support, increasing the refresh rate of DRAM cells
not only cannot guarantee to avoid RH [1], [4] but also may
cause significant performance and energy overheads [6], [7].
To deal with RH much efficiently, prior studies have proposed
two kinds of hardware-based solutions. First, counter-based
schemes have been proposed. By using the counter, they
refresh the row before the RH threshold value that corresponds
to the number of accesses that causes RH, is reached [5], [8],
[9]. Albeit counter-based approaches can avoid RH without
exception, they suffer from considerable area overhead be-
cause a huge number of counters are required. Considering

cost-sensitive and highly dense DRAM design, this high area
overhead makes counter-based solutions impractical.

The second type of solutions is probability-based methods.
The approaches of this type effectively mitigate the area
overhead by employing only a few pseudo-random number
generators (PRNGs), instead of many counters. In PARA [1],
RH is avoided by carrying out an extra refresh to one of the
adjacent rows of the accessed row with a fixed probability for
each activation. By increasing the probability of the additional
refresh, PARA can provide a stronger protection from RH.
Even if PARA has a simple structure that can be implemented
easily, PARA has difficulty in avoiding RH in a highly
scaled-down DRAM, even with a higher additional refresh
probability [4], [11]. Moreover, carrying out many additional
refreshes with a higher refresh probability may result in severe
performance degradation and energy consumption.

In PRoHIT [11], employing an access history table and
probabilistic management of the history table were suggested
to provide more effective RH reductions. PRoHIT has an
advantage only when the number of aggressor rows is not big
because a memory access pattern involving each aggressor
row can be easily found and maintained. Unfortunately, as
the number of aggressor rows is increased, recognizing exact
memory access patterns becomes hard. As a result, PRoHIT
may have difficulty in avoiding RH, even if a large number of
extra refreshes are carried out.

III. PROPOSED METHOD

A. Overview of Proposed Method

In this paper, we propose a new hardware-based solu-
tion for row-hammering (RH), called Adaptive-probabilistic
Additional Row Refresh (AARR). AARR is based on an
observation that every memory access does not have the same
degree of threat for causing RH. For instance, accessing a
frequently activated row is much more likely to cause RH than
accessing a rarely activated row. Fig. 1 presents an overview of
the proposed method. In AARR, all DRAM rows are classified
into several groups, and the degree of risks for inducing RH
is monitored with respect to this group unit. A small table and
a few logic blocks are added to keep track of the level of RH
threat for each group. At every memory access, AARR carries
out an additional refresh with a probability that is determined
based on the threat level of the accessed row group. The threat
level of each row group is periodically updated based on their
recent access frequency and the previous threat level.

B. Implementation of the Proposed Method

AARR is implemented in the memory controller, as shown
in Fig. 1, to avoid any modification to the DRAM device.
AARR consists of a table and a few additional logic blocks.
Each entry of the table is dedicated to each row group, and
each entry is composed of Access Cnt and Threat Level.
Access Cnt records the number of accesses within a prede-
termined time interval. Threat Level indicates the degree of
threat for causing RH. Threat Level is defined in four levels,
and a higher level is meant to have a higher additional row
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Fig. 1. Overview of the proposed method

refresh probability. In our design, the additional row refresh
probability is empirically chosen from 0.005 for the lowest
level to 0.020 for the highest level. For the next higher level,
the probability is increased by 0.005. AARR logic blocks
consist of a control logic, which manages the operation of
the AARR table, and a few pseudo-random number generators
(PRNGs), which will generate an appropriate additional row
refresh probability for each threat level.

C. Operation of the Proposed Method

At each memory access, the address of an accessed row is
sent to AARR. Based on the received address, AARR first
checks the threat level of the row group that contains the
accessed row and increments the access count of the row group
by one. According to the threat level, AARR additionally
refreshes one of the contiguous rows of the accessed row with
one of the aforementioned four probabilities (0.005, 0.010,
0.015, 0.020). For example, if the accessed row’s threat level
is three, an extra refresh conducted with the probability of
0.020.

The threat level of each row group is updated at a fixed inter-
val of 2 tREFI (15.6µs). Fig. 2 shows the update mechanism of
the threat level. The threat level of all row groups is initialized
to level two in the beginning, and the threat level of each row
group is renewed based on both the access frequency and the
threat level of the previous period at every update interval.

0 1 2 3

Access_Cnt = 0

Access_Cnt > 0 Access_Cnt >= 100

Access_Cnt < 100

Fig. 2. Threat Level Update Scheme

Specifically, if the number of accesses of the previous period
is smaller than the predefined access frequency threshold, the
threat level is decreased. We experimentally set two access
frequency thresholds: zero between levels zero and one, and
a hundred between levels two and three. To understand this
clearly, a couple of example cases will be discussed. First,
when the previous threat level is two and the prior access
frequency is 50, the threat level goes down to one since the
number of accesses is lower than the threshold (100). On
the other hand, if the previous threat level was zero, and the
row group underwent at least one activation, the threat level
elevates to one. After updating the threat level, the access
count of each entry of the table (Access Cnt) is cleared to
keep track of the access count of the next interval.

IV. EVALUATION METHODOLOGY

In order to evaluate the effectiveness of our proposed
method, a well-known DRAM simulator named DRAMSim2
[12] is integrated with a widely-used processor simulator
named gem5 [13], and the integrated simulator is modified to
implement the proposed method. Table I provides the system
configuration with which we evaluated the performance, and
we used [14] for the DRAM timing parameters. The RH
threshold value is chosen to be 2000, based on [11]. We
performed simulations under both general and malicious appli-
cations environments. SPEC CPU 2006 [15] benchmarks are
selected for general applications, and five types of malicious
applications are carefully generated as the representative RH-
based attack scenarios [2]–[4].

Table II presents descriptions of malicious applications.
Type 1 is the streaming attack pattern in which randomly
selected N aggressor rows are accessed repeatedly. Type 2 is
a mix of Type 1 pattern and arbitrarily chosen rows. Type 3 is
a typical double-sided RH attack that repeatedly activates the
adjacent rows of every victim row. Type 4 is a combination of
Type 3 and randomly selected rows. Type 5 is a blend of Type
1 and Type 3. We set value N , the number of aggressor rows,
variably from 10 to 345 to analyze the sensitivity according
to the population of aggressor rows. In malicious applications,
memory accesses to a bank are generated as much as possible
to maximize the attack capability, and every attack is run
for 64ms. We duplicated eight copies of each benchmark
for the general applications and ran a billion instructions.
Reliability is assessed by analyzing the reduction ratio of RH,
and the additional number of refreshes is taken into account



TABLE I
EVALUATED SYSTEM CONFIGURATION

Processor 8 cores, 2 GHz, 8-wide issue, 8 MSHRs/core,
OoO 192-entry instruction window

Last-Level 512KB shared, 64B cache line,
Cache 8-way associative
Memory FR-FCFS [16], 64-entry request queueController
Main 8Gb device, x8 DDR4-3200 [14], 1 channel,
Memory 1 rank, 16 banks/rank, 64K rows/bank, 1KB page

TABLE II
TYPES OF MALICIOUS APPLICATIONS

Type Description Illustration
1 Streaming Attack (X1, X2, · · ·, XN )∗

2 Streaming Attack + X1, R1, X2, R2

Randomly Selected Rows , · · ·, XN , RN , · · ·

3 Double-sided (X1 − 1, X1 + 1, · · ·
Row-hammering Attack , XN − 1, XN + 1)∗

4
Double-sided Row X1 − 1, R1, X1

-hammering Attack + +1, · · ·, RN

Randomly Selected Rows , XN + 1, · · ·

5 Double-sided Row-hammering (X1 − 1, Y1, X1 + 1
Attack + Streaming Attack , · · ·, YN , XN + 1)∗

to compare the performance and energy overheads of each
method.

V. EXPERIMENTAL RESULTS

In this section, the performance of our proposed method is
compared to that of the following methods: 1) PARA [1] with
two fixed additional refresh probabilities: 0.005 and 0.014,
2) PRoHIT [11] explained in subsection II-C. Table III shows
the number of RH occurrences in malicious applications when
the population of aggressor rows (N ) is 170. Our proposed
method, AARR, eliminates all RH occurrences compared to
the baseline that is the conventional DRAM that uses only
auto-refresh for RH mitigation. PRoHIT fails to mitigate RH
occurrences in several attack types (1, 2, 5). Especially, it
cannot reduce any RH at the streaming attack (Type 1). The
main reason for the PRoHIT’s failure is that it has difficulty in
finding the exact memory access pattern when a large number
of aggressor rows exist, even though it utilizes the probabilistic
table management. PARA with additional refresh probability
0.005 (PARA-0.005) is also unable to prevent some types
of malicious attacks. PARA with a higher additional refresh
probability 0.014 (PARA-0.014) performs better in terms of
preventing RH. However, it not only performs more refreshes
than AARR (18270 vs 16347) but also cannot get rid of all
RH occurrences of the Type 1 attacks. The reason why AARR
is much efficient than the other methods is that AARR can
adjust the additional refresh probability flexibly according to
the previous execution information regardless of the number
of aggressor rows.

To analyze the impacts of the population of aggressor rows
(N ) in malicious applications, we examined the RH reduction
ratio that represents how many RH occurrences are reduced

TABLE III
NUMBER OF ROW-HAMMERING OCCURRENCES AT N=170

Attack Baseline PARA PARA PRoHIT AARRType -0.005 -0.014
1 337 24 1 337 0
2 6 0 0 4 0
3 498 20 0 0 0
4 7 0 0 0 0
5 458 14 0 288 0

by each method compared to the baseline, with respect to
various numbers of aggressor rows. The result is shown in
Fig. 3. AARR shows the highest reliability since it successfully
deters all RH occurrences for every number of aggressor rows.
PARA-0.014 prevents all RH except for the case when the
number of aggressor rows is 170. Both PARA-0.005 and
PRoHIT have difficulty in mitigating malicious attacks. In
particular, PARA-0.005 becomes less reliable as the population
of aggressor rows is decreased. This is because the accesses to
each aggressor row become more frequent so that PARA-0.005
fails to carry out refreshes to victim rows before exceeding the
RH threshold. On the other hand, PRoHIT is much vulnerable
to malicious attacks with a big number of aggressor rows.
As mentioned before, PRoHIT cannot detect memory access
patterns as more aggressor rows exist, although it uses a
probabilistic table management to compensate for their limited
size of the table.

Fig. 4 shows the RH reduction ratio in the general appli-
cations. We assessed only the benchmarks that suffered from
RH in the baseline. Both AARR and PARA-0.014 provide the
perfect RH mitigation. On the contrary, PARA-0.005 cannot
eliminate RH in most benchmarks because the additional
refresh probability is not high enough so that it cannot
proactively carry out refreshes to victim rows before exceeding
the RH threshold. Additionally, PRoHIT also experienced RH
in several benchmarks due to its aforementioned drawback.

In order to evaluate the performance and energy efficiency
of each method, we counted the number of additional re-
freshes in general applications. Fig. 5 shows the result when
normalized to AARR. PARA-0.005 has the smallest number
of additional refreshes. Albeit PARA-0.005 performs almost
60% fewer refreshes than AARR, with this small number of
additional refreshes, PARA-0.005 will suffer from the afore-
mentioned reliability problem. PRoHIT performs the biggest
number of additional refreshes, and it performs 48.1% more
refreshes than our proposed method. Unfortunately, PRoHIT
also suffered from RH not only in the malicious applications
but also in the general applications, despite its big number
of additional refreshes. PARA-0.014 performs 5.6% more
refreshes than the proposed method in spite that PARA-0.014
failed to protect from RH-based malicious attacks (N=170).
If a higher probability is employed to improve the reliability
against RH further, the performance and energy overheads will
become much severe. In conclusion, using a fixed probability
for additional refreshes cannot be sufficiently effective. Con-
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sequently, it is evident that AARR offers the most reliable
protection with the lowest overhead against RH compared to
the existing solutions.

VI. CONCLUSION

Continuous scaling down of the DRAM process technology
introduced a new reliability problem, named row-hammering.
Addressing this problem is critical because row-hammering
may appear in general applications in a highly scaled-down
DRAM as well as it can be exploited by malicious attacks
to modern computing systems. Even though several methods
exist to resolve the row-hammering problem, some of them
fail to prevent row-hammering completely while others incur
too much overheads. This paper proposes a novel method to
avoid row-hammering, called AARR, based on an observation
that each memory access has a different degree of threat for

causing row-hammering. In AARR, a small table and a few
logic blocks are added to keep track of the risk level for
inducing row-hammering. At every memory access, AARR
performs an additional refresh with a dynamically adjusted
probability according to the threat level of that memory access.
Our evaluation shows that only AARR can eliminate all row-
hammering in both general and malicious applications com-
pared to two existing solutions. Besides, AARR performs a
relatively small number of additional refreshes. In conclusion,
our proposed method provides the most reliable protection
against row-hammering with the lowest performance and en-
ergy overheads.
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