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Abstract—DRAM requires refresh operations to maintain 

data integrity. As the density of DRAM increases, system 

performance degradation caused by refresh is getting more 

serious because column access commands are blocked during the 

refresh operation. In this paper, we propose a novel refresh 

method called Bank-Level Fine Granularity Refresh (BFGR) that 

minimizes the performance degradation due to refresh. In BFGR, 

the refresh granularity is finer by applying Fine Granularity 

Refresh (FGR) of DDR4 at the bank level to reduce the stall time 

that column access commands are blocked by a refresh 

operation. If a special row buffer called split row buffer is used, a 

column access operation and a refresh operation can be 

simultaneously carried out, and BFGR employs this split row 

buffer to parallelize column access operations with a refresh 

operation. Our evaluation for DRAM devices with a 64ms 

retention time shows that the performance improvement of the 

proposed scheme over the conventional DRAM system on 

memory-intensive applications is 13.6% for 16Gb devices and 

17.1% for 32Gb devices on a multi-core system, respectively. 
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I.  INTRODUCTION 

Each memory cell of a dynamic random-access memory 
(DRAM) is composed of a capacitor and an access transistor to 
store one-bit data, and it is mainly used for the main memory 
of computer systems. Because the charge in a DRAM cell leaks 
over time, DRAM is required to periodically carry out a refresh 
operation that recharges the capacitor to maintain data 
integrity. 

The minimum time that a logical value of the weakest 
memory cell in DRAM is retained, is defined as the retention 
time in the JEDEC-DDR standard [1-4]. To keep the retention 
time of all memory cells, refresh commands are issued 
periodically. Because the memory controller cannot issue any 
memory request during a refresh operation, the refresh 
operation degrades system performance by increasing the 
response time of memory requests because requests are pended 
in the memory controller. 

A basic refresh scheme is all-bank refresh that all banks in 
a rank are refreshed. Because the memory controller cannot 
issue a memory request command to any bank during the all-

bank refresh operation, the system performance degradation by 
all-bank refresh gets worse as the DRAM device density 
increases. To reduce the overhead of all-bank refresh, JEDEC 
standards provide options for LPDDR DRAM and DDR4 
DRAM; per-bank refresh (bank-level refresh) for LPDDR 
DRAM and fine granularity refresh (FGR) for DDR4 DRAM 
[2-4]. The two refresh schemes reduce the refresh granularity 
and increase the refresh frequency. Since the amount of bits to 
be refreshed by a single refresh command decreases in the two 
refresh schemes, latencies of the two refresh operations are also 
lower than all-bank refresh. However, although the refresh 
latency is reduced by the bank-level refresh and FGR, the 
reduced refresh latency is still high. As a result, the blocked 
time that any memory request cannot be issued to the DRAM 
device will be high and performance degradation due to refresh 
will be quite considerable. 

In this paper, to mitigate the refresh overhead, we propose a 
refresh scheme called bank-level fine granularity refresh 
(BFGR). The proposed scheme employs a special row buffer 
called split row buffer where a conventional row buffer is split 
into a row access buffer and a column access buffer to enable a 
column access command to be serviced during a refresh 
operation [5]. In the BFGR scheme, the refresh latency is lower 
than conventional refresh schemes by applying FGR per bank 
to reduce the refresh granularity further. Our evaluation for 
16Gb and 32Gb DRAM devices with a 64ms retention time 
shows that the performance improvement of the proposed 
scheme over the conventional DRAM system for memory 
intensive applications is 13.6% and 17.1% on a multi-core 
system, respectively. 

II. MOTIVATION 

Split Row buffer DRAM (SRDRAM) is proposed to hide the 
latency of activate and precharge operations [5]. Fig. 1 shows 
the structure of SRDRAM. SRDRAM separates the row buffer 
into row access buffer (RAB) and column access buffer (CAB). 
RAB operates row-level operations such as activate and 
precharge operations, and CAB operates column-level 
operations such as read and write operations. SRDRAM 
reduces the activate and precharge overhead by activating a 
new page or precharging in RAB while executing a column 
access command in CAB. Also, SRDRAM can serve a column 



 

 

access command in CAB while refreshing in RAB. However, 
because the refresh latency of SRDRAM increases as the 
DRAM device density increases, the system performance 
degradation gets worse for a bigger device density. SRDRAM 
can execute a refresh operation and column access commands 
that have the same row address with the page in CAB in 
parallel, but it is not possible to activate a new page while 
refreshing, as shown in Fig. 2. Therefore, the number of 
issuable column access commands in parallel with refresh is 
limited. After all issuable commands have been issued during a 
refresh in SRDRAM, the remained commands are blocked 
until the refresh operation is completed. The stall time 
increases as the refresh latency increases in proportion to the 
DRAM device density. To reduce the stall time, we should 
reduce the refresh latency to reduce the performance loss. 

Fig. 1. Bank Structure of Split Row buffer DRAM (SRDRAM) 

Fig. 2. Service timeline of column access command along with refresh 

command in SRDRAM 

III. PROPOSED REFRESH SEMEME 

To reduce the refresh latency, we propose a new refresh 
scheme called bank-level fine granularity refresh (BFGR). 
BFGR is a refresh scheme that applies FGR at the bank level. 
BFGR refreshes cells at the bank level like the bank-level 
refresh but the refresh granularity is finer than the conventional 
bank-level refresh because FGR is supported per bank. BFGR 
supports various modes which are similar to modes in FGR; 
BFGR 1x, BFGR 2x, and BFGR 4x. BFGR 1x has the same 
granularity as the existing bank-level refresh, and the refresh 
units of BFGR 2x and BFGR 4x are one half and one quarter of 
the bank-level refresh, respectively. In BFGR, the reduced 
refresh latency reduces the stall time and thus alleviates the 
performance loss due to the refresh operation 

A. BFGR timing parameters 

In order to accurately estimate the performance of the 
proposed method, timing parameters for BFGR are determined 
based on timing parameters of the bank-level refresh and those 
of FGR. Table I shows the refresh latency of the bank-level 
refresh in LPDDR4 [4] and FGR in DDR4 [2]. The bank-level 
refresh latency (tREFpb) is approximately 50% of all-bank 
refresh latency (tREFab). On the other hand, the latency for 
REF 2x of the 8Gb DRAM device is the same as that for REF 
1x of the 4Gb DRAM device. The latency for REF 4x of the 
8Gb DRAM device is the same as that for FGR 2x of the 4Gb 
DRAM device and that for REF 1x of the 2Gb DRAM device. 
This similarity is resulted from the fact that FGR latencies are 
proportional to the number of rows to be refresh. We calculate 
the refresh latencies of BFGR for 16Gb and 32Gb DRAM 
devices [6] are determined based on the latency ratios of the 
all-bank refresh and the bank-level refresh in LPDDR, and the 
FGR latency in DDR4. Table II shows the refresh latency of 
BFGR. For example, the latency for BFGR 1x of a 32Gb 
DRAM device is half of that of all-bank refresh of a 32Gb 
DRAM device, and the latency for BFGR 2x of a 32Gb DRAM 
is the same as that for BFGR 1x of a 16Gb DRAM. 

TABLE I.  REFRESH LATENCY FOR CONEVNIONAL DRAM 

DDR 

Type 

Refresh 

Mode 

DRAM device density  

2Gb 4Gb 8Gb 

DDR4 REF x1 160 ns 260 ns  350 ns 

DDR4 REF x2 110 ns 160 ns 260 ns 

DDR4 REF x4 90 ns 110 ns 160 ns 

LPDDR4 REFab 160 ns 180 ns 280 ns 

LPDDR4 REFpb 60 ns 90 ns 140 ns 

TABLE II.  LATENCY FOR BFGR 

Refresh 

Mode 

DRAM device density  

4Gb 8Gb 16Gb 32Gb 

REFab 260 ns 350 ns 530 ns 890 ns 

BFGR x1 160 ns 175 ns 265 ns 445 ns 

BFGR x2 - - 175 ns 265 ns 

BFGR x4 - - 130 ns 175 ns 

B. BFGR Power Consumption 

Table 3 shows the amount of current of the activate and 
refresh operations. The amounts of current of the activate 
operation and all-bank refresh are obtained by referring to the 
values given in the Micron's 4Gb DDR3 DRAM datasheet [7]. 
According to Micron's DDR4 DRAM [8], the amounts of 
current for REF 2x and REF 4x are less than that for REF x1 
by -14% and -33%, respectively. According to the LPDDR2 
datasheet [9], the current of bank-level refresh is approximately 
30% of that of all-bank refresh. By taking operational 
similarities into account, the current of BFGR 1x is assumed to 
be approximately 30% of all-bank refresh, and BFGR 2x and 
4x are assumed to be 86% and 66% of BFGR 1x, respectively. 

The JEDEC-DDR standard specifies several AC parameters 
to limit the power consumption of the DRAM. One of them, 



 

  

defined as four-active window (tFAW), limits the number of 
activate operations to at most four within a window. Unlike 
conventional DRAMs, SRDRAM performs both the activation 
and refresh operations simultaneously. Therefore, to prevent 
the power consumption of SRDRAM from exceeding the limit 
of the power supply network, the activate and the BFGR 
operations are limited based on tFAW. Table III shows that the 
activate current and the BFGR current are similar. Therefore, 
we limit the maximum number of activation operations to 
three, not four, during the refresh operation. 

TABLE III.  POWER PARAMETERS FOR BFGR  

Operation 
Current 

(mA) 
Operation 

Current 

(mA) 

ACT 65 BFGR 210 

BFGR x1 63 BFGR x2 54 

BFGR x4 42   

C. Implementation Cost of BFGR 

BFGR is a per-bank refresh based on FGR. At the bank 
level, the refresh row address decoder is the same as DDR4 
because BFGR is equivalent to FGR in terms of the number of 
refreshed rows per bank. To implement BFGR, only the logic 
circuit to select banks to be refreshed should be added. With 
this circuit, the bank address is sent through a refresh command 
just like per-bank refresh of LPDDR and the selected bank is 
refreshed. Therefore, the implementation overhead of BRGR is 
minimal. 

TABLE IV.  SIMULATION PARAMETERS 

Processors 4 cores, 2GHz, Out-of-order, 32-enty inst. windows 

L1 Cache 64B cache line, 32KB inst./data cache per core, 2-

way, LRU, 2 cycles 

L2 Cache 64B cache line, shared 512KB, 8-way, LRU, 20 
cycles 

DRAM 

Controller 

FR-FCRS scheduling policy, 32-enty command 

queue per bank, 1 channel 

DRAM 
device 

DDR3-1600 [7],1 rank, 8 banks per rank, latency: 13-
13-13ns (tRP-tRCD-tCL) 

Refresh 

setting 

tRFCab=530/890ns for 16/32Gb DRAM [6] device, 

tREFIab = 7.8μs 

TABLE V.  WORKLOAD MPKI 

MPKI Workloads 

> 4 
mcf, lbm, bwaves, zeusmp, bzip2, leslie3d, sjeng, 

libaunantum, milic, aster 

<4 

soplex, omnetpp, gobmk, hmmer, perlbench, 

gromacs, calculix, h264ref, sphinx3, povray, named, 
gcc, GemsFDTD 

IV. EXPERIMENTAL ENVIRONMENT 

To conduct performance evaluation of the proposed 
scheme, we have combined two of widely used architecture 
simulators, gem5 [10] and DRAMsim2 [11] with some 
modifications to implement the proposed methods. Table IV 
shows simulation parameters for the target processor and the 
DRAM. We use a 16Gb and a 32Gb future DRAM devices to 
evaluate the performance [6]. Used DDR3 parameters [7] and 
BFGR parameters are summarized in Table II. We evaluated 

our system with a 64ms retention time, which is a very 
common value for commercial DDR DRAMs. Benchmarks 
were selected from the SPEC CPU 2006 benchmark suite [12], 
and they were executed with one billion instructions. Table V 
shows that an application is classified into memory intensive 
and memory non-intensive based on miss per kilo instruction 
(MPKI). A metric called Weighted Speed-up (WS) [13], was 
used to evaluate the performance of the proposed refresh 
scheme.  

V. EVALUATION RESULTS 

The proposed scheme is compared with the following 
memory devices: 1) a conventional DRAM, 2) SRDRAM that 
does not issue column access commands during all-bank 
refresh (NOISSUESRDRAM), 3) SRDRAM with all bank refresh 
that issues column access commands during all-bank refresh 
(REFabSRDRAM), 4) SRDRAM with BFGR (BFGRSRDRAM). 

Fig. 3 shows the normalized weighted speedup of the 
proposed schemes over the conventional DRAM. The 
performance improvements of NOISSUESRDRAM for the 16Gb 
density on memory-intensive applications (MPKI > 4) is 9.9%. 
This performance improvement is mainly due to SRDRAM 
that can perform row access operations such as activate and 
precharge operations and column access operations such as 
read and write operations in parallel. The performance 
improvements of REFabSRDRAM for the 16Gb device is 11.4%. 
Since REFabSRDRAM can serve column access commands in 
parallel with a refresh operation, the system performance 
degradation due to refresh is reduced. The performance gain of 
BFGRSRDRAM is larger than REFabSRDRAM because the refresh 
latency of BFGRSRDRAM is shorter than REFabSRDRAM, and 
therefore the stall time is further reduced. The performance 
improvements of NOISSUESRDRAM, REFabSRDRAM and 
BFGRSRDRAM for the 32Gb DRAM device are 10.9%, 11.7% 
and 17.1%, respectively. The performance improvements of 
SRDRAM with the technique to reduce the refresh overhead 
are larger for the 32Gb DRAM device because the system 
performance degradation due to refresh of the conventional 
DRAM for the 32Gb DRAM device is larger than that for the 
16Gb DRAM device. 

Fig. 3. Normalized Weighted Speed-up (WS)  of a multi-core system for a 

various DRAM device densities 



In the case of memory non-intensive applications (MPKI < 
4), the performance improvements of NOISSUESRDRAM, 
REFabSRDRAM, and BFGRSRDRAM with the 16Gb device are 
6.5%, 7.4% and 7.8%, respectively, Those for the 32Gb device 
are 4.3%, 5.8%, and 9.3%, respectively. System performance 
improvements in memory non-intensive applications are lower 
than those in memory-intensive applications because 
SRDRAM needs sufficient memory requests to serve column 
access commands in parallel with row access commands. 

VI. CONCLUSION 

To reduce the refresh overhead, we propose a new scheme 
called Bank-Level Fine Granularity Refresh (BFGR) in this 
paper. This scheme employs a special row buffer called split 
row buffer Split Row-buffer DRAM (SRDRAM) has a unique 
feature that it can simultaneously carry out a column access 
command and a row access command. In addition, BFGR 
reduces the refresh latency by reducing the refresh granularity 
in order to reduce the stall time that there is no remaining 
issuable column access commands during a refresh operation in 
SRDRAM. Our evaluations for 16Gb and 32Gb DRAM 
densities with a 64ms retention time show that the proposed 
scheme on memory-intensive applications provides 13.6% and 
17.1% performance improvement on average over the 
conventional DRAM system, respectively. 
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