
Parallelizing Bank-level Fine Granularity Refresh

with Column Access Operation using Split Row

Buffer

Minkyu Lee and Ki-Seok Chung*

Department of Electronic and Computer Engineering, Hanyang University

Seoul, Republic of Korea

{hanlovelan, *kchung}@hanyang.ac.kr

Abstract—DRAM requires refresh operations to maintain

data integrity. As the density of DRAM increases, system

performance degradation caused by refresh is getting more

serious because column access commands are blocked during the

refresh operation. In this paper, we propose a novel refresh

method called Bank-Level Fine Granularity Refresh (BFGR) that

minimizes the performance degradation due to refresh. In BFGR,

the refresh granularity is finer by applying Fine Granularity

Refresh (FGR) of DDR4 at the bank level to reduce the stall time

that column access commands are blocked by a refresh

operation. If a special row buffer called split row buffer is used, a

column access operation and a refresh operation can be

simultaneously carried out, and BFGR employs this split row

buffer to parallelize column access operations with a refresh

operation. Our evaluation for DRAM devices with a 64ms

retention time shows that the performance improvement of the

proposed scheme over the conventional DRAM system on

memory-intensive applications is 13.6% for 16Gb devices and

17.1% for 32Gb devices on a multi-core system, respectively.

Keywords—Memory System;DRAM; Refrseh

I. INTRODUCTION

Each memory cell of a dynamic random-access memory
(DRAM) is composed of a capacitor and an access transistor to
store one-bit data, and it is mainly used for the main memory
of computer systems. Because the charge in a DRAM cell leaks
over time, DRAM is required to periodically carry out a refresh
operation that recharges the capacitor to maintain data
integrity.

The minimum time that a logical value of the weakest
memory cell in DRAM is retained, is defined as the retention
time in the JEDEC-DDR standard [1-4]. To keep the retention
time of all memory cells, refresh commands are issued
periodically. Because the memory controller cannot issue any
memory request during a refresh operation, the refresh
operation degrades system performance by increasing the
response time of memory requests because requests are pended
in the memory controller.

A basic refresh scheme is all-bank refresh that all banks in
a rank are refreshed. Because the memory controller cannot
issue a memory request command to any bank during the all-

bank refresh operation, the system performance degradation by
all-bank refresh gets worse as the DRAM device density
increases. To reduce the overhead of all-bank refresh, JEDEC
standards provide options for LPDDR DRAM and DDR4
DRAM; per-bank refresh (bank-level refresh) for LPDDR
DRAM and fine granularity refresh (FGR) for DDR4 DRAM
[2-4]. The two refresh schemes reduce the refresh granularity
and increase the refresh frequency. Since the amount of bits to
be refreshed by a single refresh command decreases in the two
refresh schemes, latencies of the two refresh operations are also
lower than all-bank refresh. However, although the refresh
latency is reduced by the bank-level refresh and FGR, the
reduced refresh latency is still high. As a result, the blocked
time that any memory request cannot be issued to the DRAM
device will be high and performance degradation due to refresh
will be quite considerable.

In this paper, to mitigate the refresh overhead, we propose a
refresh scheme called bank-level fine granularity refresh
(BFGR). The proposed scheme employs a special row buffer
called split row buffer where a conventional row buffer is split
into a row access buffer and a column access buffer to enable a
column access command to be serviced during a refresh
operation [5]. In the BFGR scheme, the refresh latency is lower
than conventional refresh schemes by applying FGR per bank
to reduce the refresh granularity further. Our evaluation for
16Gb and 32Gb DRAM devices with a 64ms retention time
shows that the performance improvement of the proposed
scheme over the conventional DRAM system for memory
intensive applications is 13.6% and 17.1% on a multi-core
system, respectively.

II. MOTIVATION

Split Row buffer DRAM (SRDRAM) is proposed to hide the
latency of activate and precharge operations [5]. Fig. 1 shows
the structure of SRDRAM. SRDRAM separates the row buffer
into row access buffer (RAB) and column access buffer (CAB).
RAB operates row-level operations such as activate and
precharge operations, and CAB operates column-level
operations such as read and write operations. SRDRAM
reduces the activate and precharge overhead by activating a
new page or precharging in RAB while executing a column
access command in CAB. Also, SRDRAM can serve a column

access command in CAB while refreshing in RAB. However,
because the refresh latency of SRDRAM increases as the
DRAM device density increases, the system performance
degradation gets worse for a bigger device density. SRDRAM
can execute a refresh operation and column access commands
that have the same row address with the page in CAB in
parallel, but it is not possible to activate a new page while
refreshing, as shown in Fig. 2. Therefore, the number of
issuable column access commands in parallel with refresh is
limited. After all issuable commands have been issued during a
refresh in SRDRAM, the remained commands are blocked
until the refresh operation is completed. The stall time
increases as the refresh latency increases in proportion to the
DRAM device density. To reduce the stall time, we should
reduce the refresh latency to reduce the performance loss.

Fig. 1. Bank Structure of Split Row buffer DRAM (SRDRAM)

Fig. 2. Service timeline of column access command along with refresh

command in SRDRAM

III. PROPOSED REFRESH SEMEME

To reduce the refresh latency, we propose a new refresh
scheme called bank-level fine granularity refresh (BFGR).
BFGR is a refresh scheme that applies FGR at the bank level.
BFGR refreshes cells at the bank level like the bank-level
refresh but the refresh granularity is finer than the conventional
bank-level refresh because FGR is supported per bank. BFGR
supports various modes which are similar to modes in FGR;
BFGR 1x, BFGR 2x, and BFGR 4x. BFGR 1x has the same
granularity as the existing bank-level refresh, and the refresh
units of BFGR 2x and BFGR 4x are one half and one quarter of
the bank-level refresh, respectively. In BFGR, the reduced
refresh latency reduces the stall time and thus alleviates the
performance loss due to the refresh operation

A. BFGR timing parameters

In order to accurately estimate the performance of the
proposed method, timing parameters for BFGR are determined
based on timing parameters of the bank-level refresh and those
of FGR. Table I shows the refresh latency of the bank-level
refresh in LPDDR4 [4] and FGR in DDR4 [2]. The bank-level
refresh latency (tREFpb) is approximately 50% of all-bank
refresh latency (tREFab). On the other hand, the latency for
REF 2x of the 8Gb DRAM device is the same as that for REF
1x of the 4Gb DRAM device. The latency for REF 4x of the
8Gb DRAM device is the same as that for FGR 2x of the 4Gb
DRAM device and that for REF 1x of the 2Gb DRAM device.
This similarity is resulted from the fact that FGR latencies are
proportional to the number of rows to be refresh. We calculate
the refresh latencies of BFGR for 16Gb and 32Gb DRAM
devices [6] are determined based on the latency ratios of the
all-bank refresh and the bank-level refresh in LPDDR, and the
FGR latency in DDR4. Table II shows the refresh latency of
BFGR. For example, the latency for BFGR 1x of a 32Gb
DRAM device is half of that of all-bank refresh of a 32Gb
DRAM device, and the latency for BFGR 2x of a 32Gb DRAM
is the same as that for BFGR 1x of a 16Gb DRAM.

TABLE I. REFRESH LATENCY FOR CONEVNIONAL DRAM

DDR

Type

Refresh

Mode

DRAM device density

2Gb 4Gb 8Gb

DDR4 REF x1 160 ns 260 ns 350 ns

DDR4 REF x2 110 ns 160 ns 260 ns

DDR4 REF x4 90 ns 110 ns 160 ns

LPDDR4 REFab 160 ns 180 ns 280 ns

LPDDR4 REFpb 60 ns 90 ns 140 ns

TABLE II. LATENCY FOR BFGR

Refresh

Mode

DRAM device density

4Gb 8Gb 16Gb 32Gb

REFab 260 ns 350 ns 530 ns 890 ns

BFGR x1 160 ns 175 ns 265 ns 445 ns

BFGR x2 - - 175 ns 265 ns

BFGR x4 - - 130 ns 175 ns

B. BFGR Power Consumption

Table 3 shows the amount of current of the activate and
refresh operations. The amounts of current of the activate
operation and all-bank refresh are obtained by referring to the
values given in the Micron's 4Gb DDR3 DRAM datasheet [7].
According to Micron's DDR4 DRAM [8], the amounts of
current for REF 2x and REF 4x are less than that for REF x1
by -14% and -33%, respectively. According to the LPDDR2
datasheet [9], the current of bank-level refresh is approximately
30% of that of all-bank refresh. By taking operational
similarities into account, the current of BFGR 1x is assumed to
be approximately 30% of all-bank refresh, and BFGR 2x and
4x are assumed to be 86% and 66% of BFGR 1x, respectively.

The JEDEC-DDR standard specifies several AC parameters
to limit the power consumption of the DRAM. One of them,

defined as four-active window (tFAW), limits the number of
activate operations to at most four within a window. Unlike
conventional DRAMs, SRDRAM performs both the activation
and refresh operations simultaneously. Therefore, to prevent
the power consumption of SRDRAM from exceeding the limit
of the power supply network, the activate and the BFGR
operations are limited based on tFAW. Table III shows that the
activate current and the BFGR current are similar. Therefore,
we limit the maximum number of activation operations to
three, not four, during the refresh operation.

TABLE III. POWER PARAMETERS FOR BFGR

Operation
Current

(mA)
Operation

Current

(mA)

ACT 65 BFGR 210

BFGR x1 63 BFGR x2 54

BFGR x4 42

C. Implementation Cost of BFGR

BFGR is a per-bank refresh based on FGR. At the bank
level, the refresh row address decoder is the same as DDR4
because BFGR is equivalent to FGR in terms of the number of
refreshed rows per bank. To implement BFGR, only the logic
circuit to select banks to be refreshed should be added. With
this circuit, the bank address is sent through a refresh command
just like per-bank refresh of LPDDR and the selected bank is
refreshed. Therefore, the implementation overhead of BRGR is
minimal.

TABLE IV. SIMULATION PARAMETERS

Processors 4 cores, 2GHz, Out-of-order, 32-enty inst. windows

L1 Cache 64B cache line, 32KB inst./data cache per core, 2-

way, LRU, 2 cycles

L2 Cache 64B cache line, shared 512KB, 8-way, LRU, 20
cycles

DRAM

Controller

FR-FCRS scheduling policy, 32-enty command

queue per bank, 1 channel

DRAM
device

DDR3-1600 [7],1 rank, 8 banks per rank, latency: 13-
13-13ns (tRP-tRCD-tCL)

Refresh

setting

tRFCab=530/890ns for 16/32Gb DRAM [6] device,

tREFIab = 7.8μs

TABLE V. WORKLOAD MPKI

MPKI Workloads

> 4
mcf, lbm, bwaves, zeusmp, bzip2, leslie3d, sjeng,

libaunantum, milic, aster

<4

soplex, omnetpp, gobmk, hmmer, perlbench,

gromacs, calculix, h264ref, sphinx3, povray, named,
gcc, GemsFDTD

IV. EXPERIMENTAL ENVIRONMENT

To conduct performance evaluation of the proposed
scheme, we have combined two of widely used architecture
simulators, gem5 [10] and DRAMsim2 [11] with some
modifications to implement the proposed methods. Table IV
shows simulation parameters for the target processor and the
DRAM. We use a 16Gb and a 32Gb future DRAM devices to
evaluate the performance [6]. Used DDR3 parameters [7] and
BFGR parameters are summarized in Table II. We evaluated

our system with a 64ms retention time, which is a very
common value for commercial DDR DRAMs. Benchmarks
were selected from the SPEC CPU 2006 benchmark suite [12],
and they were executed with one billion instructions. Table V
shows that an application is classified into memory intensive
and memory non-intensive based on miss per kilo instruction
(MPKI). A metric called Weighted Speed-up (WS) [13], was
used to evaluate the performance of the proposed refresh
scheme.

V. EVALUATION RESULTS

The proposed scheme is compared with the following
memory devices: 1) a conventional DRAM, 2) SRDRAM that
does not issue column access commands during all-bank
refresh (NOISSUESRDRAM), 3) SRDRAM with all bank refresh
that issues column access commands during all-bank refresh
(REFabSRDRAM), 4) SRDRAM with BFGR (BFGRSRDRAM).

Fig. 3 shows the normalized weighted speedup of the
proposed schemes over the conventional DRAM. The
performance improvements of NOISSUESRDRAM for the 16Gb
density on memory-intensive applications (MPKI > 4) is 9.9%.
This performance improvement is mainly due to SRDRAM
that can perform row access operations such as activate and
precharge operations and column access operations such as
read and write operations in parallel. The performance
improvements of REFabSRDRAM for the 16Gb device is 11.4%.
Since REFabSRDRAM can serve column access commands in
parallel with a refresh operation, the system performance
degradation due to refresh is reduced. The performance gain of
BFGRSRDRAM is larger than REFabSRDRAM because the refresh
latency of BFGRSRDRAM is shorter than REFabSRDRAM, and
therefore the stall time is further reduced. The performance
improvements of NOISSUESRDRAM, REFabSRDRAM and
BFGRSRDRAM for the 32Gb DRAM device are 10.9%, 11.7%
and 17.1%, respectively. The performance improvements of
SRDRAM with the technique to reduce the refresh overhead
are larger for the 32Gb DRAM device because the system
performance degradation due to refresh of the conventional
DRAM for the 32Gb DRAM device is larger than that for the
16Gb DRAM device.

Fig. 3. Normalized Weighted Speed-up (WS) of a multi-core system for a

various DRAM device densities

In the case of memory non-intensive applications (MPKI <
4), the performance improvements of NOISSUESRDRAM,
REFabSRDRAM, and BFGRSRDRAM with the 16Gb device are
6.5%, 7.4% and 7.8%, respectively, Those for the 32Gb device
are 4.3%, 5.8%, and 9.3%, respectively. System performance
improvements in memory non-intensive applications are lower
than those in memory-intensive applications because
SRDRAM needs sufficient memory requests to serve column
access commands in parallel with row access commands.

VI. CONCLUSION

To reduce the refresh overhead, we propose a new scheme
called Bank-Level Fine Granularity Refresh (BFGR) in this
paper. This scheme employs a special row buffer called split
row buffer Split Row-buffer DRAM (SRDRAM) has a unique
feature that it can simultaneously carry out a column access
command and a row access command. In addition, BFGR
reduces the refresh latency by reducing the refresh granularity
in order to reduce the stall time that there is no remaining
issuable column access commands during a refresh operation in
SRDRAM. Our evaluations for 16Gb and 32Gb DRAM
densities with a 64ms retention time show that the proposed
scheme on memory-intensive applications provides 13.6% and
17.1% performance improvement on average over the
conventional DRAM system, respectively.

ACKNOWLEDGMENT

This work was supported by Institute for Information &
communications Technology Promotion (IITP) grant funded by
the Korea government (MSIP) (R7119-16-1009, Development
of Intelligent Semiconductor Core Technologies for IoT
Devices based on Harvest Energy).

REFERENCES

[1] JEDEC Standard, DDR3 SDRAM STANDARD, JESD79-3F, July

2012

[2] JEDEC Standard, DDR4 SDRAM, JESD79-4A, November 2013.

[3] JEDEC Standard, Low Power Double Data Rate 3 (LPDDR3),
JESD209-3C, August 2015.

[4] JEDEC Standard, Low Power Double Data Rate 4 (LPDDR4),
JESD209-4A, November 2015.

[5] M. Lee and K. Chung, “High performance DRAM architecture with split
row buffer,” Electron. Lett., vol. 52, pp. 1844-1845 , 2016.

[6] I. Bhati, M. T. Chang and Z. Chishti, “DRAM refresh mechanisms,
penalties, and trade-offs,” IEEE Trans. Comput. vol. 39, pp. 108-121.
2016

[7] Micron Technology, 4Gb: x4, x8, x16 DDR3 SDRAM, December 2014.

[8] Micron Technology, 8Gb: x4, x8, x16 DDR4 SDRAM, January 2017.

[9] Micron Technology, 168-Ball, Single-channel Mobile LPDDR2
SDRAM, July 2014.

[10] N. Binkert et al., “The gem5 simulator,'' ACM SIGARCH Computer
Architecture News, vol. 39, pp. 1-7, 2011.

[11] P. Rosenfeld, E. Cooper-Balis, and B. Jacob, “DRAMSim2: A cycle
accurate memory system simulator,'' IEEE Computer Architecture
Letters, vol. 10, pp. 16--19, 2011.

[12] SPEC CPU 2006. https://www.spec.org/cpu2006.

[13] S. Eyerman and L. Eeckhout, “System-level performance metrics for
multiprogram workloads,'' IEEE MICRO, vol. 28, pp. 42-53, 2008.

