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Abstract—Deep Convolutional Neural Networks (CNNs) have
been widely used for various computer vision tasks because
they hierarchically extract bountiful features from a high-
dimensional image. Also, some CNNs incorporate channel at-
tention mechanisms that re-scale each channel of intermediate
feature maps based on their importance. The channel attention
modules squeeze the spatial information of a feature into a
representative value to transform it as a re-scaling value. In order
to reduce the amount of information, attention modules have
utilized hand-designed pooling functions such as max pooling
or average pooling which have been widely adopted in CNNs,
because they add negligible computational complexity. However,
a significant amount of spatial information is lost due to these
pooling functions. In this paper, we propose a generalized pooling
function that scales down spatial information with respect to the
importance of each pixel. Unlike max pooling or average pooling,
our score-based aggregation is capable of flexibly adjusting to
input. Also, the score-based aggregation function learns how
to squeeze the spatial information into the most appropriate
representative value, which will convert the pooling into a
spatial attention mechanism. Finally, we propose a novel method
called Score-based Aggregated Attention Module (SAAM) that
utilizes the proposed score-based aggregation. Our experimental
results on CIFAR-10 and CIFAR-100 datasets demonstrate that
SAAM achieves the highest classification accuracy improvement
among existing channel attention modules since the score-based
aggregation in SAAM is a more dynamic and effective method
than the hand-designed aggregations.

I. INTRODUCTION

Convolutional Neural Networks (CNNs) have unquestion-
ably increased the visual classification performance because
they convey rich spatial features from a high-dimensional
image [1]–[5]. To express sufficient hierarchical features of
an image, deep CNNs consist of a stack of many convolution
layers. Also, each convolution layer uses multiple trainable
filters to extract multiple features from its input, and the ex-
tracted features are considered to be mutually independent of
each other along the channel axis. The feature map is formed
in a three-dimensional shape—height, width, and channel—
and becomes an input of the next convolution layer which is
followed by normalization and non-linearities.

Recent approaches focus on the fact that channels of fea-
tures should be re-scaled with respect to their importance on
a given input image: the process is also known as channel at-

tention. Squeeze-and-Excitation (SE) networks [6] have shown
that re-calibrating each channel of a feature can significantly
increase the representative power of CNNs. To be specific,
an SE network first extracts a scalar value from the spatial
domain by channel by aggregating spatial information. Then
the SE network transforms the squeezed channel descriptor by
a neural network called Multilayer Perceptron (MLP) followed
by a sigmoid activation function. The final output of the SE
network and the original feature map are multiplied to re-scale
it by channel.

In SE networks, the aggregation function is the global
average pooling, which means that the spatial information of a
channel is reduced to a scalar value by computing the average.
In Convolutional Bottleneck Attention Module (CBAM) [7],
not only the global average pooling but also the global max
pooling is used for the aggregation function, resulting in a
dual-path SE-like network. These aggregation methods could
be inappropriate because they deliver little spatial information.
Moreover, there is a chance to be a better pooling functions
for the given tasks. See Fig. 1(a) and 1(b).

Hence, our work in this paper is motivated by the fact
that those methods can be generalized. Correspondingly, we
propose a generalized aggregation function in this paper. In
the proposed aggregation function, the spatial information
is computed by adding pixel-wise predictive scores that are
outputs of a softmax function followed by a small convolution
layer. See Fig. 1(c). Therefore, we call an attention module that
uses the score-based aggregation as Score-based Aggregated
Attention Module (SAAM). The score-based aggregation by
a softmax function can generalize the average pooling and
the max pooling function. For instance, if one element of the
softmax output is close to one while the others are close to
zero, the output is a relaxed version of a max pooling function.

One interesting fact is that the pixel-wise scores can hold
spatial information because the scores are computed from a
small convolution layer, and the scores are given with respect
to the importance of pixels. In other words, pooling with pixel-
wise scores corresponds to a spatial attention.

For experiments, we first conduct an ablation study to verify
the effectiveness of SAAM on CIFAR-10 and CIFAR-100
[8]. By changing the number of paths in SAAM, the exper-



(a) Average pooling used in SE [6] and CBAM [7].

(b) Max pooling used in CBAM [7].

(c) Score-based aggregation in SAAM

Fig. 1: Different types of pooling for spatial feature aggrega-
tion in attention modules. Our proposed score-based pooling
(c) can generalize both the average pooling (a) and the max
pooling (b). In (c), σ(·) denotes the softmax activation.

imental results show that the single path SAAM surpasses
the multi-path SAAM because the score-based aggregation
behaves like a spatial attention mechanism. Also, we validate
the performance of SAAM with the state-of-the-art attention
modules—SE [6], SE with both average pooling and max
pooling, and CBAM [7]. We plug SAAM, SE, and CBAM in
ResNet [4] with various depths. The experimental results show
that SAAM significantly outperforms the previously proposed
attention modules.

II. RELATED WORKS

A. Attention Mechanisms in CNN

The attention mechanism has emerged as a method to
solve problems in a field called neural machine translation
by giving more weights to essential words [9]–[12]. Recently,
the idea of the attention model has been adopted to enhance
the representative power of CNNs. In Squeeze-and-Excitation
(SE) network [6], the channel information of an intermediate
feature map X ∈ RH×W×C is dynamically re-calibrated by a
vector r whose C elements all lie in the range (0, 1). The
re-scaling vector r is computed by two steps: aggregation

and transformation. In an aggregation step, the feature map
X is squeezed into s ∈ RC by an aggregation function
f : RH×W×C −→ RC . An element of s represents the identity
of the corresponding channel of X, by a scalar value. In
SE [6], the authors call s as a channel descriptor. Then, s
is transformed to r by the function g : RC −→ RC , which
consists of two sequential fully-connected layers with a ReLU
[13] nonlinearity. Finally, r, which is a sigmoid activation,
is element-wisely multiplied to X to achieve the channel
attention.

Although SE networks [6] augment the feature representa-
tion along the channels of a feature map, they do not preserve
any spatial information because they use the global average
aggregation that the spatial information is shrunk into a scalar
value as the mean of each pixel. This type of aggregation
can be treated as a ”static” aggregation since the weight
per pixel for aggregation does not change (The details will
be described in Section III-A). In [7], the authors proposed
a method called Convolutional Bottleneck Attention Module
(CBAM) claiming that using not only the global average
pooling but also the global max pooling improves the overall
performance of channel attention. The experimental results in
[7] show that using multiple types of pooling methods is better
than using an aggregation, but only a few static aggregation
methods are available—average pooling, max pooling, and min
pooling, for example. One can also rebut that those static hand-
designed aggregation methods might not be optimal, even
though multiple of them are in an attention module. However,
our proposed aggregation method is not only flexible but can
be trained to be optimal. On top of that, CBAM utilizes
a spatial attention mechanism as well. The spatial attention
module, which is followed by a channel attention module,
re-calibrates each pixel by a sigmoid activation of an output
of a convolution layer, by squeezing the channel information
with the global max pooling and the global average pooling.
We argue in Section V-B2 that a softmax activation is more
appropriate than a sigmoid activation.

B. Dynamic Pooling

The static poolings have been commonly used in CNNs,
but the limitation of them is obvious: they do not preserve
the spatial information. Hence there have been some efforts to
minimize the information loss with dynamic poolings.

The stochastic pooling [14] randomly samples one of the
pixels in a pooling window with respect to the softmax
probability of its input. Unlike our method, the stochastic
pooling lacks scalability because it requires extensive random
number generations.

Zhang et al. [15] introduced a global pooling layer, which
consists of log-mean-exp function. They use a trainable value
for the log-mean-exp function, but the value does not vary
from instance to instance, while ours can be altered. Gridhar
and Ramanan [16] proposed an attention-based pooling for
human action recognition tasks. Although their approach is
based on the attention mechanism, they use an attention model
which is based on class-specific weights (weights per class)



since they place the dynamic pooling layer at the end of the
CNN (right before the linear classifier). However, our method
does not need any class-specific weights.

III. THE PROPOSED METHOD

In this paper, we generalize an aggregation function which
is commonly used for shrinking the high-dimensional spatial
information into the low-dimensional space to have a channel
descriptor. We first introduce how the commonly used aggre-
gation methods, such as max pooling and average pooling,
can be generalized by a score-based aggregation. Then we
present how the score-based aggregation can be adopted to
the attention module.

A. Score-based Aggregation

We explore the identity of the global average pooling
and the global max pooling, which are commonly used for
aggregating the spatial information in CNNs. Given an input
tensor X ∈ RH×W×C , the global average pooling function
favg : RH×W×C −→ RC is defined as the following formula:

sc = favg(Xc)

=
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h
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=
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vavg =

1

HW

and Xc and X̂c are the c-th channel of the input and output of
favg, respectively. Similarly, the global max pooling function
fmax : RH×W×C −→ RC is:

sc = fmax(Xc)

=
∑
h

∑
w

vmax
h,w xh,w,c,

(2)

where

vmax
h′,w′ =

{
1 if xh′,w′,c ≥ xh,w,c, ∀h,w
0 otherwise.

These aggregation methods are based on static and hand-
designed weights, as we mentioned in Section II-A. Also, they
are too biased: average poolings assign equal weights for all
pixels without considering the importance, and max poolings
neglect all but one pixel. With this view, it is hard to say
that the outputs of these functions effectively represent the
original input. To remodel the static aggregation as a flexible
and generalized one, we focus on the properties of Vmax and
Vavg. Given a H×W spatial weight matrix V whose elements
have the following properties:

0 ≤ vh,w ≤ 1,∀h,w,
∑
h

∑
w

vh,w = 1, (3)

TABLE I. Steps in Score-based Aggregated Attention Module
(SAAM)

Step Operation (Eq. #) Output notation (shape)
1 Channel aggregation (5) U(H ×W × 1)

2 Convolution (6) Ũ(H ×W × 1)
3 Softmax (7) V(H ×W × 1)
4 Spatial aggregation (4) s(1× 1× C)
5 Transformation (8), (9) r(1× 1× C)

6 Channel-wise recalibration (10) X̂(H ×W × C)

we can generalize the global average pooling and the global
max pooling by V because favg and fmax are particular
cases of the weighted sum of the input tensor X by V. Each
element of the spatial weight V can be regarded as a score
per spatial location of X. Hence, we call the generalized
pooling function as score-based aggregation. The score-based
aggregation function f : RH×W×C −→ RC is then:

sc = f(Xc)

=
∑
h

∑
w

vh,wxh,w,c.
(4)

We further extend the score-based aggregation by adopting
a spatial attention mechanism to the spatial score matrix V.
That is, if V becomes input-specific, and it can be trained to
contain useful spatial information, we can minimize the spatial
information loss while aggregating.

To generate the input-specific spatial weight V, we follow
three steps: First, we squeeze the information of the input
tensor X along the channel dimension by averaging to have
U ∈ RH×W :

U =
1

C

∑
c

Xc. (5)

Second, we transform the remaining spatial information with
a small convolution layer Conv : RH×W×1 −→ RH×W×1:

Ũ = Conv(U). (6)

We now recall the properties of V in (3): every element in V
is a value in range (0, 1) and the sum of all elements of V is 1.
The score matrix V is normalized by softmax activations since
the output of the softmax function shares the same property
in (3). Therefore, the score matrix V which will be used in
(4) can be achieved from a softmax output of Ũ:

vh,w =
exp(ũh,w)∑

h′
∑

w′ exp(ũh′,w′)
. (7)

One can quickly notice that V is a probability distribution
of which pixel is going to be selected as an output of the
pooling function, because of the properties in (3). Hence,
unlike the hand-designed pooling, our method gives trainable
and input-aware scores, which lie somewhere between constant
equal weights (average pooling) and extreme, one-or-nothing
weights (max pooling), concerning the importance of each
pixel.
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Fig. 2: Score-based Aggregated Attention Module.

B. Score-based Aggregation in Channel Attention Modules

The output of the score-based aggregation function is fed
into a transformation function g:

r = sigmoid
(
g(f(X)

)
(8)

where sigmoid(x) = 1
1+exp (−x) and g consists of two fully-

connected layers and a ReLU nonlinearity φ:

g(f(X)) =W2φ(W1f(X)). (9)

In (9), W1 and W2 are the weight matrices of dense layers.
The final result of the channel attention module r and the
feature map Xc are channel-wise multiplied with each other
to obtain X̂c:

X̂c = rcXc. (10)

X̂c is then fed into the next convolution layer. For brevity,
we will call the channel attention module with the score-
based aggregation as Score-based Aggregated Attention Mod-
ule (SAAM). The overall procedure of SAAM is summarized
in Table I and Fig. 2.

One advantage of SAAM that the number of paths in the
attention module is not limited by the number of static pooling
methods. In CBAM [7], there are two paths, one from the
global average and the other from the global max pooling,
and they share the transformation function g. One can add
more paths by putting other static pooling methods such as min
pooling, but the number of static poolings is limited. However,
because SAAM employs the generalized aggregation function,
we can set the number of paths by implementing multiple
score-based aggregations.

We suggest that using one path in SAAM is good enough,
even though it is counter-intuitive. Because the score-base
aggregation already reduces the spatial information loss, the
multi-path attention module is no longer needed. We will
present experimental results and analyze results in Section
V-A.

IV. IMPLEMENTATION

A. Base Network

ResNet [4] is employed as a base CNN architecture.
Resnet with various depths are chosen—specifically, ResNet-
20, ResNet-56, and ResNet-110, where the suffix represents
the total number of convolution layers and fully-connected
layers.

B. Attention Modules

During the transformation stage of SE [6], CBAM [7] and
SAAM, the dimension is reduced in order to reduce the
amount of memory requirement and that of computations.
For example, when the dimension of s = favg(X) (the
squeezed information by the aggregation function favg) is C,
the dimension of W1s in (9) is reduced to C

t where t > 1.
For all networks, we set t to be 4. That is, the dimension of s
is once reduced to C

4 . Following SE networks, all channel
attention modules are applied before summation with the
identity branch of ResNet [6]. Also, we use a 5×5 convolution
layer for SAAM as in (6). It increases a negligible amount of
computation since the number of channels in the input and
that in the output of the convolution layer are both 1.

C. Notations

We implement SAAM with 1, 2, and 4 paths and mark as
SAAM-K-D where K and D denote the number of paths and
that of layers in CNN, respectively. For example, SAAM-4-20
represents SAAM with 4 paths, which is attached to ResNet-
20. Also, we will refer SE-1-D as a SE network [6] with
the global average pooling (single path), and SE-2-D as a SE
network with both the global average pooling and the global
max pooling (a dual-path CBAM [7] style). Finally, we will
denote the baseline model as ResNet-D.

D. Overheads

The trade-off between the performance and the memory
and computational overhead is significant to deploy the neural
network in practice. We analyze the memory and the com-
putational requirements of ResNet-20, SE-1-20, CBAM-2-20,
and SAAM-1-20. ResNet-20 requires 280K parameters and
43.14 MFLOPs to classify a 32 × 32 × 3 CIFAR-100 image.
SE-1-20 requires 288K parameters and 43.15 MFLOPs. Also,
CBAM-2-20 requires 288.7K parameters and 43.35 MFLOPS,
which the number of parameters and computations are 3.04%
and 0.49% larger than those of ResNet-20, respectively. The
number of parameters and computations of SAAM are in be-
tween SE-1-20 and CBAM-2-20. SAAM-1-20 requires 288.5K
parameters and 43.25 MFLOPs, corresponding to 2.96% and
0.25% increase over ResNet-20. Since the complexity of the
memory and computations increased by SAAM are negligible
to that of original ResNet, the performance gain per increased
parameters and computations are reasonable.



E. Training

We train all networks on CIFAR-10 and CIFAR-100 [8]
datasets with 182 epochs. Both datasets contain 60,000 32×32
color images with 10 and 100 classes, respectively. We take
50,000 images for training and 10,000 images for testing on
both datasets. The training data are augmented with random
shuffling, random flipping, and random cropping. Although
CIFAR-100 has ten coarse classes, we use 100 fine-grained
classes for training and verification. We apply l2 regularization
loss with a multiple of 0.0002 to all parameters except the
attention modules. A widely used method called Stochastic
Gradient Descent with a momentum of 0.9 is used for all
networks. Also, the learning rate starts from 0.1 and decays
to 0.01 and 0.001 at the 91st and 136th epoch, respectively.

V. EXPERIMENTS

We conduct experiments to examine the performance of
SAAM. In Section V-A, we analyze the relation between the
number of paths in SAAM and the performance. In Section
V-B, ResNets with SAAM are compared to ResNets with the
state-of-the-art attention modules with static aggregation—SE
[6] and SE with both average pooling and max pooling. Also,
we analyze SAAM with CBAM to explore the effectiveness
of the spatial attention mechanism of SAAM.

A. Ablation Study: Single-path vs. Multi-path SAAM

Since SAAM can have a unlimited number of paths, we
examine how the accuracy of SAAM changes with respect
to the number of paths. In Fig. 3, the relation between the
accuracy and the number of paths is presented. The results
show that the multi-path SAAM does not always achieves
a higher accuracy than the single-path SAAM. Instead, the
accuracy tends to decrease when the number of paths is
increased. The accuracy of SAAM-1-56 is 72.49% on CIFAR-
100, but the accuracy of SAAM-2-56 and SAAM-4-56 are
71.48% and 71.30%, respectively. Although SAAM-4-110
and SAAM-4-20 show the best accuracy on CIFAR-10 and
CIFAR-100, respectively, using the single path SAAM may be
preferred because the performance difference is negligible yet
the computational overhead for 4-path SAAMs is quadrupled.

We suppose that this is because the score-based aggregation
captures rich spatial information; hence, it does not need
additional aggregation functions. In contrast, CBAM uses the
global max pooling and the global average pooling for the
aggregation functions: they cannot compress the spatial in-
formation individually, but using both altogether can preserve
spatial information to some extent. In summary, the experi-
mental results show that the single path SAAM is good enough
to show the effectiveness of the score-based aggregation.

B. Performance Comparison

We examine the classification accuracy of the baseline
ResNets, SE networks [6], CBAM [7], and SAAM on CIFAR-
10 and CIFAR-100. We selected SAAMs with a single path
because the single path SAAMs showed the best accuracy
at the majority of experiments in Section V-A. First, the
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Fig. 3: Accuracy of SAAM with different number of paths on
CIFAR-10 and CIFAR-100. Multiple paths do not guarantee
the high performance.

TABLE II. Top-1 accuracy on CIFAR-10 (%).

Attention Type K
ResNet Size

20 56 110
No attention N/A 91.97 92.90 93.60
SE [6] (AvgPool) 1 92.04 93.66 94.06
SE [6] (AvgPool & MaxPool) 2 91.81 93.4 93.91
CBAM [7] 2 91.78 93.20 93.82
SAAM (ours) 1 92.60 93.69 94.12

TABLE III. Top-1 accuracy on CIFAR-100 (%)

Attention Type K
ResNet Size

20 56 110
No attention N/A 67.43 71.33 72.83
SE [6] (AvgPool) 1 68.06 71.78 73.76
SE [6] (AvgPool & MaxPool) 2 68.10 71.88 73.71
CBAM [7] 2 67.84 72.16 73.24
SAAM (ours) 1 68.51 72.49 74.20



performance comparison of SAAM and two types of SE
networks [6] is presented. We next compare SAAM with the
other spatial attention module, CBAM [7]. The experimental
results on CIFAR-10 and CIFAR-100 are summarized in Table
II and Table III, respectively.

1) SAAM vs. Channel Attention Modules: We analyze the
performance of SAAM with SE networks to examine whether
the score-based pooling is competent enough when compared
with the static hand-designed pooling methods. Therefore, we
train two SE networks—one uses the global average pooling
as an aggregation function, and the other uses both the global
average pooling and the global max pooling. Note that the
latter is equal to CBAM [7] without any spatial attention
module.

On CIFAR-10 dataset, SAAM-1-20, SAAM-1-56, and
SAAM-1-110 outperform both the single path SE and the dual
path SE networks. The accuracy of SAAM-1-20 is 92.60% (an
error rate of 0.0740), which is 7.04% lower error rate than that
of SE-1-20. Surprisingly, the accuracy of SAAM-1-56 is even
higher than the accuracy of ResNet-110, although the number
of layers of SAAM-1-56 is almost half that of ResNet-110.

The results are similar on CIFAR-100 dataset, which is more
challenging than CIFAR-10. SAAM outperforms the other
channel attention modules with large margins. For example,
the accuracy of SAAM-1-110 is 74.20%, and the error rate of
it is 1.68% lower than that of SE-1-110. The experimental
results show that the score-based aggregation compresses
better spatial features than the global average pooling or the
global max pooling.

2) SAAM vs. Spatial Attention Module: Because SAAM
utilizes spatial attention while aggregating the spatial informa-
tion, we compare the performance of SAAM with the state-of-
the-art spatial attention module, CBAM [7], which is another
variant of SE [6]. The major architectural difference between
SAAM and CBAM is that the spatial attention of SAAM is
done by a softmax output, which is a generalization of the
routinely used aggregation functions, while that of CBAM is
basically an output of the sigmoid function.

We conduct experiments on CIFAR-10 and CIFAR-100. The
experimental results show that SAAMs outplays CBAM with
a less amount of computation and a fewer number of weights.
The accuracy of SAAM-1-20, SAAM-1-56, and SAAM-1-
110 is higher than that of CBAM-2-20, CBAM-2-56, and
CBAM-110, respectively. We explain the results with respect
to the different functions which are used for spatial attention in
SAAM and CBAM, as we stated above. Because the softmax
outputs are Categorical distributions over a spatial dimension,
the softmax function is more appropriate to spatial attention
than sigmoid outputs, which represent Bernoulli distributions
over individual pixel.

VI. CONCLUSION AND FUTURE WORKS

In this paper, we investigate the problem of aggregation
methods in conventional channel attention modules and mini-
mize the spatial information loss via the score-based aggrega-
tion, which is a generalized pooling method. Because the score

of each pixel represents the importance of the pixel, the spatial
information is effectively preserved. Without adding too many
redundant parameters and computations, the experimental re-
sults on CIFAR-10 and CIFAR-100 show that our proposed
method achieved superlative accuracy improvement compared
with other state-of-the-art channel attention modules. We will
explore other applications that suffer from information loss
while aggregating in future work. Also, since the very first
aggregation along the channel axis in the proposed method is
still static aggregation method, we will change this average
pooling with more appropriate aggregation methods.
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