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Abstract— The extended min-sum algorithm (EMS) for 

decoding non-binary low density parity check (NB-LDPC) codes 

reduces the decoding complexity by truncating the message 

vector by retaining only the most reliable symbols. However, the 

EMS algorithm does not consider that the noise of the received 

codeword is gradually reduced as the iteration count goes up. In 

this paper, we propose a low-complexity adaptive EMS 

algorithm, called threshold-based EMS (TB-EMS). The TB-

EMS algorithm has a simple adaptive rule to calculate the new 

message vector length compared to the A-EMS. The proposed 

algorithm selects one of two message vector lengths. 

Experimental results show that the proposed algorithm reduces 

the decoding complexity with minimal performance 

degradation compared with the EMS algorithm. Further, the 

decoding performance of the TB-EMS is better than A-EMS. 
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I.  INTRODUCTION 

Non-binary low density parity check (NB-LDPC) codes 
over Galois field GF(q) (q>2) can provide a better error 
correction performance than binary LDPC codes, but the 
decoding complexity is significantly increased [1], [2]. For 
example, in the case of q-ary sum product algorithm (QSPA), 
which is one of the decoding algorithms, the computational 
complexity of a check node update operation is O(q2) [3]. 
Various types for low complexity decoding algorithms have 
been proposed [4], [5], [6], [7]. Among them, to reduce the 
complexity, the extended min-sum algorithm (EMS) retains 
only the most reliable nm (<q) symbols among q symbols of 
the message vector [7]. As a result, the computational 
complexity of the check node update process is greatly 
reduced to O(nm

2). 
During the decoding process, as the number of iterations 

increases, the noise level of the received codeword is 
gradually reduced, and the message vector length can be 
decreasing accordingly. To take advantage of this 
characteristics, adaptive EMS algorithms that vary the number 
of retained messages are proposed [8], [9], [10]. 

In [8], an adaptive EMS algorithm called A-EMS on a 
codeword basis was proposed. To reduce the decoding 
complexity, the effective message vector length is calculated 
by check node error rate (CNER), which represents the 

reliability of check nodes. The A-EMS algorithm calculates 
the truncation size as follows. 
 

 na
k = A+C×(∆CNERk)2 (1) 

 
na

k represents the adaptive message vector length to be 
used in the (k+1)th iteration and A is the least message vector 
length. C and ∆CNERk are predetermined parameters, and the 
k is the number of iterations. However, calculating the new 
message vector length at every iteration incurs additional 
computational complexity because it involves computing a 
square and a multiplication. 

In [9], another adaptive algorithm called two-length EMS 
(TL-EMS) on a message basis was proposed. It uses the 
reliability difference between the most and the second most 
reliable symbols among incoming messages from variable 
nodes when updating the check node. It selects the effective 
message vector length from the two predetermined message 
vector lengths. Also, when updating a variable node, they 
follow their own adaptive rules to truncate the message vector 
coming from each check node. However, the process of 
calculating the message vector length for each input node 
requires additional operations when updating the check node 
and variable node. 

In this paper, we propose a low-complexity adaptive EMS 
algorithm. The TB-EMS algorithm has a simple adaptive rule 
than A-EMS algorithm. The proposed algorithm selects one 
of the two predetermined effective message vector lengths by 
comparing the CNER with the check node error rate threshold 
(CNERth). The CNERth is determined based on the error 
correction capability. Unlike A-EMS, the proposed algorithm 
employs only the two message vector lengths, one of which 
will be selected based a simple comparison instead of some 
complex operation. Experimental results show that the 
proposed algorithm reduces the decoding complexity with 
minimal performance degradation compared with the EMS 
algorithm. 

II. BACKGROUNDS 

A. Non-binary Low Density Parity Check Codes 

NB-LDPC codes are defined by an M×N sparse parity 

check matrix H [11], [12] where M is the parity symbol length, 
and (N–M) is the information symbol length. The code rate R 
is (N–M)/N. The H matrix can be represented by a Tanner 



graph, which is a bipartite graph consisting of two node sets 
[13]. There are N variable nodes and M check nodes in the 
Tanner graph. If element hi,j of the H matrix has a non-zero 
value, the ith check node (i ∈ {1, 2, 3, …, M}) and the jth 
variable node (j ∈  {1, 2, 3, …, N}) in the corresponding 
Tanner graph are connected to each other. Each element hi,j 
has a value out of q symbols. The number of check nodes 
connected with a variable node is called dv, and the number of 
variable nodes neighboring a check node is called dc. When dv 
and dc have fixed values, such codes are called (dv, dc) regular 
NB-LDPC codes.  

B. Extended Min-Sum Algorithm 

Algorithm 1 describes the decoding steps of the EMS 
algorithm. Here are some notations used in Algorithm 1.  
 

▪ vj: the jth variable node and ci: the ith check node 

▪ Uj,i(a): vj to ci message associated to symbol a. 

▪ Vi,j(a): ci to vj message associated to a. 

▪ Hc(i): set of variable nodes connected to ci. 
▪ Hv(j): set of check nodes connected to vj. 

▪ Rj(a): a priori information of vj associated to a. 
▪ Rj

post(a): a posteriori information of vj associated to a. 

▪ L(i): set of symbols satisfying ci’s parity check equation (2). 
 
 ∑ ℎ𝑖𝑗𝑎𝑗 = 0𝑗∈𝐻𝑐(𝑖)  (2) 

 
where aj means a symbol sent from vj to ci. 

▪ L(i|aj=a): subset of L(i) when aj = a. 

 

Algorithm 1. Decoding steps of EMS algorithm 

Input: 𝑅𝑗(𝑎), kmax  

Initialization: 

Set 𝑈𝑗,𝑖(𝑎) = 𝑅𝑗(𝑎) and k = 0. 

Iteration:  

Check node update: 

𝑉𝑖,𝑗(𝑎)  = min
(𝑎

𝑗′)
𝑗′∈𝐻(𝑖)

∈𝐿(𝑖|𝑎𝑗 = 𝑎)

 [ ∑ 𝑈𝑗′,𝑖(𝑎𝑗′)]

𝑗′∈𝐻𝑐(𝑖)\{𝑗}

 

Variable node update:  

�̅�𝑗,𝑖(𝑎) =  𝑅𝑗(𝑎)  +  ∑ 𝑉𝑖′,𝑗(𝑎)𝑖′∈𝐻𝑣(𝑗)\{𝑖}   

𝑈𝑗,𝑖(𝑎) =  �̅�𝑗,𝑖(𝑎) − �̅�𝑗,𝑖(0) 

Post processing: 

𝑅𝑗
𝑃𝑜𝑠𝑡(𝑎) =  𝑅𝑗(𝑎) + ∑ 𝑉𝑖′,𝑗(𝑎)

𝑖′∈𝐻𝑣(𝑗)

 

Tentative decision: 

𝑍𝑗 = 𝑎𝑟𝑔{𝑚𝑖𝑛𝑎∈𝐺𝐹(𝑞)𝑅𝑗
𝑃𝑜𝑠𝑡(𝑎)} 

Syndrome check 

(if syndrome S = Z× 𝐻𝑇 = 0, return Z) 

if k = kmax, decoding failure. 

k = k+1, move to the check node update 

Output: Zj 

 
The EMS decoding algorithm largely consists of five steps: 

Initialization, Check node update, Variable node update, 
Post processing and Tentative decision as shown in 
Algorithm 1. All operations are based on the message vector 

of each node. The message vector used in the update process 
is composed of a reliability measure corresponding to the 
symbol. The measure of reliability is expressed as a log 
likelihood ratio (LLR) which is computed as (3). 
 

 𝑅𝑗(𝑎) = log
𝑃(𝑦𝑗 = 0|𝑥𝑗)

𝑃(𝑦𝑗 = 𝑎|𝑥𝑗)
, 𝑎 ∈ 𝐺𝐹(𝑞) (3) 

 
where xj denotes the jth symbol of the transmitted 

codeword, and yj denotes the jth symbol of the received 
codeword. The variable node is initialized using Rj(a). 

III. PROPOSED ALGORITHM 

A. Decoding Process 

The proposed algorithm is a low-complexity adaptive 
EMS algorithm called threshold-based EMS (TB-EMS) that 
selects the message vector length for the next decoding 
process by comparing the CNER value with a predetermined 
threshold value denoted by CNERth. 

The CNER values reveal a consistent tendency that is 
proportional to bit error rate (BER) [8]. Therefore, we may use 
the CNER value for adjusting the message vector length. The 
CNER can be calculated as shown in (4). 
 

 CNER = 
# 𝑜𝑓 𝑢𝑛𝑠𝑎𝑡𝑖𝑠𝑓𝑖𝑒𝑑 𝑐ℎ𝑒𝑐𝑘 𝑛𝑜𝑑𝑒𝑠

# 𝑜𝑓 𝑎𝑙𝑙 𝑐ℎ𝑒𝑐𝑘 𝑛𝑜𝑑𝑒𝑠
 (4) 

 
The CNER value in (4) represents the ratio of the number 

of unsatisfied check nodes among all check nodes, where the 
unsatisfied check node means a check node whose syndrome 
check is failed. The syndrome check is performed with the 
most reliable symbols of each check node output. 
 

 

Figure 1.  Decoding flow of the proposed algorithm 

The flowchart of the proposed algorithm is shown in Fig.1. 
First, in Step 1, the proposed algorithm initializes the message 
truncation size to nm. In Step 2, the decoding process of the 
EMS algorithm is performed at every iteration. After the kth 
iteration, the CNERk value is calculated using (4) in Step 3. In 
Step 4, CNERth and CNERk are compared. When CNERk is 
smaller than CNERth, a smaller message size is used for the 
next decoding process. The truncation rule of the proposed 
algorithm is as follows. 

 



 na 
k = {

𝑛𝑚 (𝐶𝑁𝐸𝑅𝑘 ≥ 𝐶𝑁𝐸𝑅𝑡ℎ )
 𝑛𝑠 (𝐶𝑁𝐸𝑅𝑘 < 𝐶𝑁𝐸𝑅𝑡ℎ )

 where ( 𝑛𝑠 < 𝑛𝑚) (5) 

 
Unlike the A-EMS algorithm, the proposed algorithm 

employs only the two message vector lengths, one of which 
will be selected by a simple comparison operation as in (5). 

B. Determine the CNERth 

In the proposed low-complexity decoding algorithm, 
determining CNERth appropriately is very crucial to achieve a 
good frame error rate (FER) performance. With respect to 
various combinations of the two vector lengths, we measure 
the FER performance and the average message size with 
respect to various CNER values to determine the best CNERth 
as shown in Fig. 2.  
 

 

Figure 2.  The FER and the ratio of ns over various CNERs for (2, 12) 

regular NB-LDPC codes over GF(64) with SNR=2.5. 

Fig. 2 shows the FER performance and the ratio of ns 
according to various CNER values.  The ratio of ns represents 
the ratio of the ns value as the vector length between the two 
truncation sizes (nm, ns) where nm > ns. Since the truncation 
size affects the decoding complexity, the ratio of ns indicates 
the reduction amount of the decoding complexity. With a low 
CNERth, the FER performance increases but the ratio of ns 
decreases in our experiments. If the CNERth value goes below 
0.1, the FER performance remains almost the same but the 
ratio of ns decreases. Therefore, we set CNERth to 0.1 to 
maintain the FER performance while reducing the decoding 
complexity. 

IV. EXPERIMENTAL RESULTS 

We have implemented EMS, A-EMS, and the proposed 
TB-EMS algorithms to compare the FER performance and the 
average message size for transmissions over the binary phase 
shift keying (BPSK) modulation and the additive white 
gaussian noise (AWGN) channel. The maximum number of 

decoding iterations is set to 15, and 100,000 frames were 
examined to obtain the FER at each SNR for testing the 
decoding performance. 

A. Frame Error Rate 

The FER performances with (2, 4) regular NB-LDPC 
codes over GF(64) are shown in Fig. 3. The FER performance 
degradation of TB-EMS is less than 0.1dB compared with 
EMS using the same nm. However, the FER performance of 
TB-EMS is better than that of A-EMS when ns is equal to A in 
(1).  
 

 

Figure 3.  The FER performances of EMS, A-EMS, and TB-EMS for (2, 

4) regular NB-LDPC codes. 

 

 

Figure 4.  The FER performances of EMS, A-EMS, and TB-EMS for (2, 

12) regular NB-LDPC codes. 



The proposed TB-EMS algorithm shows better FER 
performances with higher code rates. The FER performances 
of the three algorithms with (2, 12) regular NB-LDPC codes 
over GF(64) are described in Fig. 4. The FER performance of 
TB-EMS with message vector length (nm, ns) is almost the 
same to that of EMS. And the FER performance degradation 
of TB-EMS is less than 0.15dB when compared with that of 
A-EMS. 

B. Average Message Size 

 

 

Figure 5.  Average message size of EMS, A-EMS, and TB-EMS for (2, 4) 

regular NB-LDPC codes. 

 

Figure 6.  Average message size of EMS, A-EMS, and TB-EMS for (2, 

12) regular NB-LDPC codes. 

Next, the comparison results of the average message size 
of the three algorithms with (2, 4) regular NB-LDPC codes 
over GF(64) are shown in Fig. 5. The average message size of 
TB-EMS is bigger than that of A-EMS, but the FER 
performance is at least 0.3dB better as shown in Fig.3 when ns 
is equal to A. The difference of the average message size 
between TB-EMS and A-EMS is less than 3. 

The average message size of the three algorithms with (2, 
12) regular NB-LDPC codes over GF(64) are shown in Fig. 6. 
When the code rate goes high, the smaller message vector 
length ns of TB-EMS may be decreased leading to a smaller 
average size as shown in Fig. 6. We compare TB-EMS with 
the two message vector lengths (6, 3) and A-EMS with A=3. 
The average message size of TB-EMS is less than that of A-
EMS by 4 when the SNR is less than 4.0. If the SNR goes 
higher, the average message size of TB-EMS slightly higher 
than A-EMS. 

V. CONCLUSION 

In this paper, a low-complexity adaptive EMS algorithm 
for NB-LDPC codes called threshold-based EMS (TB-EMS) 
is proposed. The proposed algorithm selects one of the two 
candidate message vector lengths by comparing the check 
node error rate (CNER) with a predetermined threshold value 
called CNERth. The message truncation rule of the proposed 
TB-EMS is simpler than that of a CNER-based adaptive EMS 
algorithm called A-EMS. Experimental results show the 
frame error rate (FER) performance of TB-EMS is almost the 
same as that of the EMS algorithm while the decoding 
complexity is significantly low. The advantage is more 
pronounced when the SNR or the code rate goes high. The 
average message size is used as a metric to measure the 
effective decoding complexity. The average message size of 
TB-EMS algorithm is slightly bigger than that of A-EMS. 
However, the FER performance of TB-EMS is better than that 
of A-EMS by more than 0.5dB when code rate is 0.5 or higher.  

Since the proposed method is tested on BPSK modulation, 
further experiments on other modulations are required to 
verify whether the proposed method is suitable or not. 
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