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Abstract—The amount of computation and the number of pa-
rameters of neural networks are increasing rapidly as the depth
of convolutional neural networks (CNNs) is increasing. Therefore,
it is very crucial to reduce both the amount of computation and
that of memory usage. The pruning method, which compresses a
neural network, has been actively studied. Depending on the layer
characteristics, the sparsity level of each layer varies significantly
after the pruning is conducted. If weights are sparse, most
results of convolution operations will be zeroes. Although several
studies have proposed methods to utilize the weight sparsity to
avoid carrying out meaningless operations, those studies lack
consideration that input activations may also have a high sparsity
level. The Rectified Linear Unit (ReLU) function is one of the
most popular activation functions because it is simple and yet
pretty effective. Due to properties of the ReLU function, it is
often observed that the input activation sparsity level is high
(up to 85%). Therefore, it is important to consider both the
input activation sparsity and the weight one to accelerate CNN to
minimize carrying out meaningless computation. In this paper, we
propose a new acceleration method called Direct Conversion that
considers the weight sparsity under the sparse input activation
condition. The Direct Conversion method converts a 3D input
tensor directly into a compressed format. This method selectively
applies one of two different methods: a method called image to
Compressed Sparse Row (im2CSR) when input activations are
sparse and weights are dense; the other method called image
to Compressed Sparse Overlapped Activations (im2CSOA) when
both input activations and weights are sparse. Our experimental
results show that Direct Conversion improves the inference speed
up to 2.82× compared to the conventional method.

Index Terms—convolutional neural network, sparsity-aware
acceleration, embedded system

I. INTRODUCTION

Convolutional neural networks (CNNs) have achieved great
success in various fields such as image classification [1], image
detection [2], and semantic segmentation [3]. Because modern
CNN architectures are getting deeper to achieve a higher
accuracy [4], computational cost, memory cost, and inference
latency are increasing rapidly. To improve the inference speed,
lowering methods were introduced. The lowering method typ-
ically includes a transformation of a 3-dimension (3D) input
tensor to a 2D input matrix. Since the kernel matrix is stored
in a 2D matrix format, the lowering step is not necessary.
Therefore, a 2D input matrix and a 2D kernel matrix can be
multiplied with a conventional general matrix multiplication
(GEMM). Commonly, to effectively conduct GEMM, trans-
formations such as image to column (im2col) [5] and image

TABLE I
APPLIED METHODS BASED ON THE SPARSITY LEVEL OF WEIGHT AND

INPUT ACTIVATION

Activation
Weight Dense Sparse

Dense im2row Direct Sparse Convolution
Sparse im2CSR im2CSOA

to row (im2row) [6] are preprocessed. However, many pruning
methods targeted for resource-limited computing systems tend
to convert most of the weights or the activations to zero [7],
and therefore, lots of meaningless computations are carried
out in conventional GEMM operations. Moreover, lowering
transformations suffer from significant latency and memory
overhead to generate temporary matrices.

To avoid these problems, a method called direct sparse
convolution that accelerates effectively a pruned-CNN with
sparse weights was introduced [8], [9]. In this method, instead
of the lowering transformation, a sparse kernel matrix is
represented as a format called Compressed Sparse Row (CSR)
[10]. CSR is a compression format that extracts only nonzero
values from a sparse matrix. Since the CSR format maintains
only the non-zero values to carry out only the meaningful
computations, the sparse convolution with CSR has no loss
of accuracy. Nevertheless, this method takes only the weight
sparsity into account and does not consider the input activation
sparsity. Thus, this may be inefficient for the layers where
input activations are sparse.

In this paper, we propose a new acceleration method called
Direct Conversion that considers the weight sparsity under the
sparse input activation condition. To maximize the effective-
ness of the input tensor processing, the following issues need
to be addressed. First, it should be noted that the overhead to
lower the dimension of a 3D input tensor to a 2D input matrix
form is significant. Especially, when the input tensor is sparse,
the lowering overhead will become too wasteful [11]. Second,
since the input activation sparsity and the weight sparsity
are mutually independent, it is possible that weights can be
either dense or sparse regardless of whether input activations
are sparse or not. To take these two issues into account,
the proposed Direct Conversion method converts a 3D input
tensor directly into a compression format such as CSR. And
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Fig. 1. Analysis of the population mean and the population standard deviation of input activation sparsity

one of two different methods is selectively applied: a method
called image to Compressed Sparse Row (im2CSR) when the
input activations are sparse and the weights are dense; the
other method called image to Compressed Sparse Overlapped
Activations (im2CSOA) when both the input activations and
the weights are sparse. In other words, when only the input
activation is sparse, a method called Sparse Matrix Dense
Matrix Multiplication (SpMDM) is applied, and when both
are sparse, a method called Sparse Matrix Sparse Matrix
Multiplication (SpMSpM) is selected as listed in Table I.

II. ESTIMATION OF ACTIVATION AND WEIGHT SPARSITY

In order to apply an appropriate method based on the
sparsity level, it is necessary to accurately estimate the sparsity
level of both input activations and weights for each layer. The
sparsity level of the weights and that of the input activations
are dependent on the applied weight pruning method and the
applied activation function, respectively. That is, the weights
of which absolute values are close to zero will be set to zero
through the weight pruning, and the activation function like
rectified linear unit (ReLU) generates the zero value when the
result of an operation is a negative value [7], [12]. Especially,
ReLU is one of the popular activation functions for CNN

because it is simple, yet effective. When ReLU is used as
the activation function, the input activation sparsity reaches
up to 85% in many convolution layers.

Estimation of the weight sparsity level for a trained network
is rather straightforward because all the weights will be fixed
after training is complete. On the other hand, the sparsity level
of the input activation may vary from layer to layer. However,
from running inference on CNNs with lots of images, it is
observed that sparsity levels of the input activation reveal some
consistent patterns regardless of the input images.

Fig. 1 shows the sparsity level of the input activation for
each convolution layer when the ImageNet training dataset
[13] with 1,281,167 images was used to run inference on
ResNet-50 [14] and GoogLeNet [4]. The red and blue symbols
denote the population mean (PM) and the population standard
deviation (PSD), respectively. It shows both CNNs have small
PSD values and have a similar pattern that the deeper layer it
reaches, the bigger the PM gets, and the smaller the PSD gets.
Small PSDs imply that the input activation sparsity stays with
similar levels regardless of the input images. Thus, the sparsity
level of the input activation of each layer can be analyzed in
advance. In this paper, the layers with the sparsity level of
65% or higher are categorized as a sparse layer.
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Fig. 2. Process of image to Compressed Sparse Row (im2CSR)

Algorithm 1 Image to Compressed Sparse Row
Input: In (Input tensor), Weight (Weight matrix)
Output: Out (Output tensor)
Compression format: B (CSR format)

1: B.PTR[0] = 0
2: for (h,w)← (0, 0) to (H,W ) do
3: for (c, x, y)← (0, 0, 0) to (C, k, k) do
4: if In[c][h+ x][w + y] 6= 0 then
5: B.VAL[BNNZ ] = In[c][h+ x][w + y]
6: B.COL[BNNZ ] = (c× k + x)× k + y
7: BNNZ = BNNZ + 1
8: end if
9: end for

10: B.PTR[h×H + w + 1] = BNNZ

11: end for
12: for (i, j)← (0, 0) to (M,N) do
13: for off ←B.PTR[j] to B.PTR[j + 1]-B.PTR[j] do
14: sum += B.VAL[off ] × Weight[i][B.COL[off ]]
15: end for
16: Out[i][j] = sum
17: end for

III. DIRECT CONVERSION

A. Overview

In this paper, we propose a new acceleration method called
Direct Conversion that considers the weight sparsity under the
sparse input activation condition. Direct Conversion focuses on
achieving two goals: minimizing the overhead due to lowering
tensors and accelerating the CNN based on the sparsity level.

First, to minimize the overhead of lowering, the input activa-
tion is not transformed into a matrix form. Typically, a sparse
matrix is stored as a compressed format such as CSR. The CSR
format consists of three arrays: PTR that saves the accumulated
count of nonzero elements, COL that saves the column index
of nonzero elements on each row, and VAL that saves the
nonzero values. To create a CSR using im2row, lowering
k×k×C receptive fields in a 3D input tensor I ∈ RC×H×W

to rows of a 2D input matrix Î ∈ RN×K should be preceded.
C, H , and W denote the channel, the height, and the width of

the input, respectively while k is the height and the width of
the kernel, and N and K are the height×width of the output
and k×k×C, respectively. After the preprocessing, converting
the input matrix Î to a CSR will follow as illustrated using
dotted arrows in Fig. 2. This two-step conversion process
through the lowering step incurs significant delay and memory
overhead. Second, because the input activation sparsity and
the weight sparsity are mutually independent, it is desirable to
apply different acceleration methods depending on the weight
sparsity level. In Direct Conversion, methods called im2CSR
and im2CSOA are selectively employed to convert an input
tensor directly to either a CSR or a CSOA as shown using
a solid arrow in Fig. 2 and Fig. 4, respectively. As shown in
Table I, the im2CSR method is applied when the weights are
dense, and the im2CSOA method is applied when the weights
are sparse.

B. Image to Compressed Sparse Row

When a layer has sparse input activations and dense weights,
only the sparse input tensor I is converted directly into a
compression format without going through the lowering step.
As a Direct Conversion method, the im2CSR method that
converts the sparse input tensor I into a CSR format directly is
proposed. The im2CSR algorithm for converting from a sparse
input tensor to a CSR is described in from line 2 through line
11 in Algorithm 1. Once a CSR representation is generated, the
CSR will be multiplied by a dense kernel matrix K ∈ RM×K

where M is the channel of the output using a method called
Sparse Matrix Dense Matrix Multiplication (SpMDM) [15] to
generate an output tensor. SpMDM is a method to multiply
a compression format of a sparse matrix by a dense matrix.
The inner product based SpMDM steps are described in
from line 12 to line 17 in Algorithm 1, where B is a CSR
format and BNNZ represents the number of nonzero elements
(NNZ) in B. To execute the inner product based SpMDM, the
NNZ information of the current row should be available. To
obtain this information, the accumulated count of the current
NNZ value should be subtracted from the accumulated count
of the next NNZ value. The inner product based SpMDM
described in line 14 is repeated through the obtained NNZ. As
a result, im2CSR reduces latency and memory overhead and
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Fig. 3. Example of the outer product method of sparse matrices A and B

Fig. 4. Process of image to Compressed Sparse Overlapped Activations
(im2CSOA)

Fig. 5. Example of Compressed Sparse Overlapped Activations (CSOA)

accelerates efficiently in layers with sparse input activations
and dense weights.

C. Image to Compressed Sparse Overlapped Activations

When both input matrices are sparse, a method called
Sparse Matrix Sparse Matrix Multiplication (SpMSpM) [16]
is employed. However, the inner product based SpMSpM is
inefficient because the inner product multiplication should be
performed selectively on matched indices of nonzero elements.
Therefore, checking whether row and column indices are
matched or not should be carried out for each operation. How-
ever, if the outer product method is used in SpMSpM, such
index-matching step can be eliminated. Furthermore, reusing
nonzero elements can be maximized leading to minimized
loads of columns and rows [16]. The outer product method
gets the final result through merging results of multiplication

Algorithm 2 Image to Compressed Sparse Overlapped Acti-
vations

Input: In (Input tensor), Weight (Weight matrix)
Output: Out (Output tensor)
Compression format: A (CSC format), B (CSOA format)

1: A.PTR[0] = 0, B.PTR[0] = 0
2: for j ← 0 to K do
3: for i← 0 to M do
4: if Weight[i][j] 6= 0 then
5: A.VAL[ANNZ ] = Weight[i][j]
6: A.ROW[ANNZ ] = i
7: ANNZ = ANNZ + 1
8: end if
9: end for

10: A.PTR[j + 1] = ANNZ

11: end for
12: for (c, x, y)← (0, 0, 0) to (C, k, k) do
13: for (h,w)← (0, 0) to (H,W ) do
14: if In[c][h+ x][w + y] 6= 0 then
15: B.VAL[BNNZ ] = In[c][h+ x][w + y]
16: B.COL[BNNZ ] = h×W + w
17: BNNZ = BNNZ + 1
18: end if
19: end for
20: B.PTR[(c× k + x)× k + y + 1] = BNNZ

21: end for
22: for i← 0 to K do
23: for Aoff ← A.PTR[i] to A.PTR[i+ 1] - A.PTR[i] do
24: for Boff ←B.PTR[i] to B.PTR[i+1]-B.PTR[i] do
25: Out[A.ROW[Aoff ]][B.COL[Boff ]] +=

A.VAL[Aoff ]× B.VAL[Boff ]
26: end for
27: end for
28: end for

of pairs of columns of the first input matrix and rows of the
second input matrix as illustrated in Fig. 3.

Based on the outer product based SpMSpM, we propose
a method called image to Compressed Sparse Overlapped
Activations (im2CSOA). In im2CSOA, a sparse kernel matrix
K̂ ∈ RM×K is converted to a Compressed Sparse Column
(CSC) format and the sparse input tensor I is directly con-
verted to CSOA without the lowering step as shown in Fig. 4.
While CSR stores only the nonzero elements in each row in
contiguous memory locations, CSC is similar to CSR with
the exception that each column is compressed. In CSOA, the
compression is carried out with a unit called weight overlapped
activations. The weight overlapped activations are defined as
the set of input activation elements of which index in the
sliding window matches that of a certain weight element
when the window moves over the input activation matrix. For
instance, in Fig. 5, the index of weight value, 3 in the weight
matrix is (0,0). Then, the weight overlapped activations for
the weight will be the grey-colored submatrix because the
submatrix corresponds to the set of elements that will have
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Fig. 6. Inference time speedup of conventional methods and Direct Conversion over im2col for large-scale networks (a) and small-scale networks (b)

the same index (i.e. (0,0)) as the window slides over the input
activation matrix.

The column of kernel matrix K̂ and the weight overlapped
activations of the input tensor matrix in Fig. 4 correspond
to the column of Matrix A and the row of Matrix B in
Fig. 3, respectively. Therefore, im2CSOA converts all columns
of kernel matrix K̂ to CSC and all the weight overlapped
activations of the input tensor to CSOA. After the conversion,
the outer product based SpMSpM is conducted to generate
an output tensor as illustrated in Fig. 3. Algorithm 2 shows
pseudo-codes to describe the implementation of the im2CSOA
method. In summary, by combining the Direct Conversion
method with the outer product based SpMSpM, the proposed
method achieves significant improvement over the conven-
tional methods.

IV. EXPERIMENT RESULTS

A. Experimental Setup
We evaluated the performance of Direct Conversion on a

1.43GHz ARM Cortex-A57 quad-core processor using the
ImageNet validation dataset [13]. The proposed Direct Conver-
sion method was implemented as a Caffe deep learning frame-
work [17]. As aforementioned, the applied methods based on
the sparsity level of the weight and that of the input activation
are summarized in Table I. Our implementation utilizes a 4-
way ARM advanced single instruction multiple data (SIMD)
unit for operations with 32-bit floating-point numbers [18] and
exploits thread-level parallelism with OpenMP [19]. We eval-
uated the performance of compared methods on two different
network categories: a large-scale network and a small-scale
one. First, ResNet-50 [14] and GoogLeNet [4] were selected
as large-scale networks. We used trained and pruned networks
of ResNet-50 and GoogLeNet, which are available in the
Intel SkimCaffe repository [20]. Second, SqueezeNet v1.1 and
SqueezeNet with Deep Compression [21], [22] were chosen as
small-scale networks that are suitable for resource-constrained
embedded systems.

B. Large-scale Networks
Fig. 6 (a) shows the normalized inference time speedup of

Direct Conversion compared to conventional methods for the

ResNet-50 and the GoogLeNet. The im2col method is used
as the baseline for comparison. The inference time speedup
of im2row over im2col is about 1.86×. The im2col + direct
sparse convolution method uses im2col when weights are
dense, and direct sparse convolution when the weights are
sparse [8], [9]. This method shows a slower inference time
compared to im2row in the ResNet-50 mainly due to the
underperforming im2col. Consequently, the im2row + direct
sparse convolution method shows a better performance than
im2row when the weight is dense. The im2row + im2CSR +
direct sparse convolution method achieves a speedup of 2.65×
over im2col mainly because either im2row or im2CSR is se-
lectively applied based on the input activation sparsity level of
each layer. The im2row + im2CSOA method shows a speedup
of 2.72× over im2col. In this method, when the weights
are dense and the input activations are sparse, im2CSOA
is employed instead of direct sparse convolution because
im2CSOA is faster than direct sparse convolution regardless of
the input activation sparsity. Lastly, our proposed method that
selectively applies im2row, im2CSR, and im2CSOA methods
shows the best inference time, and achieves a speedup of
2.82× over the im2col method.

C. Small-scale Networks

SqueezeNet is a small-scale network that minimizes the
amount of computation and the number of parameters so that
it should be suitable for carrying out inference on embedded
systems. SqueezeNet v1.1 was chosen because it has the
same classification accuracy but 2.4× fewer operations than
SqueezeNet v1.0. We did not apply im2CSOA and direct
sparse convolution in this experiment because this network is
not pruned. That is, most weights are quite dense. SqueezeNet
with Deep Compression is a network where SqueezeNet v1.0
is pruned with Deep Compression [22] as the pruning method,
and thus, it has sparse weights. Therefore, for this network,
we have applied the methods for sparse weights. This exper-
iment compares the inference time speedup between Direct
Conversion and various conventional methods.

Fig. 6 (b) shows the normalized inference time as the im2col
method is used as the baseline. For SqueezeNet v1.1, im2row
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TABLE II
INFERENCE TIME SPEEDUP OF COMPARED METHODS OVER IM2COL

Method ResNet-50 GoogLeNet SqueezeNet v1.1 SqueezeNet with Deep Compression
im2col 3.699s (1x) 1.536s (1x) 0.394s (1x) 0.838s (1x)
im2row 1.985s (1.86x) 0.95s (1.62x) 0.233s (1.69x) 0.534s (1.57x)
im2col + Direct sparse convolution 2.406s (1.54x) 0.867s (1.77x) - 0.645s (1.3x)
im2row + Direct sparse convolution 1.434s (2.58x) 0.694s (2.21x) - 0.564s (1.48x)
im2row + im2CSR + Direct sparse convolution 1.396s (2.65x) 0.675s (2.27x) - 0.524s (1.6x)
im2row + im2CSOA 1.359s (2.72x) 0.656s (2.34x) - 0.504s (1.66x)
Ours 1.311s (2.82x) 0.637s (2.41x) 0.225s (1.75x)∗ 0.492s (1.7x)

∗Only im2row and im2CSR is employed

is 1.69× faster than the baseline, and the proposed method is
1.75× faster. For SqueezeNet with Deep Compression, similar
performance results as for large-scale networks are achieved.
Our proposed method achieves 1.7× faster inference time
than the baseline. To sum up, Table II summarizes all the
performance results of all the compared methods for both
large-scale networks and small-scale networks.

V. CONCLUSION

In this paper, we propose a new method called Direct
Conversion to accelerate CNN utilizing the sparsity level of
the input activation. While conventional methods only consider
the sparsity level of the weights, the proposed method takes
both the weight sparsity and the input activation sparsity into
account. The input activation sparsity level can be as high as
up to 85% when the ReLU function is used as the activation
function. The proposed acceleration method includes two
conversion methods: im2CSR and im2CSOA. The proposed
Direct Conversion method focused on two issues: minimizing
the overhead due to lowering tensors and accelerating CNNs
based on the sparsity level. Our experimental results show
that the proposed method achieves the best results for both
large-scale networks and small-scale networks. The inference
time speedups of the proposed method over im2col method
are 2.82× for large-scale networks and 1.75× for small-scale
networks, respectively.
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