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Abstract—Deep neural networks reveal their usefulness
through learning from large amounts of data. However, unless
the data is correctly labeled, it may be very difficult to properly
train a neural network. Labeling the large set of data is a
time-consuming and labor-intensive task. To overcome the risk
of mislabeling, several methods that are robust against the
label noise have been proposed. In this paper, we propose
an effective label correction method called Curriculum Label
Correction (CLC). With reference to the loss distribution from
self-supervised learning, CLC identifies and corrects noisy labels
utilizing curriculum learning. Our experimental results verify
that CLC shows outstanding performance especially in a harshly
noisy condition, 91.06% test accuracy on CIFAR-10 at a noise
rate of 0.8. Code is available at https://github.com/LJY-HY/CLC.

Index Terms—Noisy Label, Curriculum Learning, Self-
Supervision

I. INTRODUCTION

The availability of a huge amount of data is one of the
deep learning breakthroughs. However, unless the data is
properly labeled, it is very challenging to properly train a
neural network. Labeling huge amount of training data is a
time-consuming and labor-intensive task. In particular, many
publicly-available train datasets contain lots of mislabeled
data, often referred to as noisily-labeled data. Without making
efforts to make the training method robust against such noisily-
labeled data, it is almost impossible for deep learning models
to achieve consistently high accuracy. The authors of [1] claim
that when the ratio of mislabeled data (noise rate) increases,
the performance of a neural network often drops drastically let
alone the training loss value takes longer to converge. Several
methods that are robust against the label noise have been pro-
posed. Many studies focused on disentangling the distribution
between correctly-labeled data (clean samples) and noisily-
labeled data (noisy samples). However, they often failed to
show good performance largely owing to the concern that the
threshold to distinguish noisy samples from clean samples was
inappropriately set, resulting in many false negatives and false
positives. Some papers have mitigated this adversity by re-
weighting data samples [2], [3], but these approaches either
require external meta-data or have to rely on heuristics.

In this paper, instead of disentangling the distribution ex-
plicitly, we propose a novel approach to correct noisy labels

based on the following two observations:

• In general, neural networks are capable of distinguishing
clean samples from noisy ones well in relatively-early
stages of the training [3]. In Figure 1(b), the loss dis-
tribution of the CNN trained by self-supervised learning
with a noise rate 0.5 after ten epochs also shows a similar
aspect. This distribution demonstrates that the clean data
have significantly lower loss values than the noisy ones.
Specifically, there are two peaks where the left peak
shows the loss distribution of clean data and the right
one shows that of noisy data.

• When the correct label is derived from self-supervised
trained neural network, the confidence level is typically
high. Otherwise, the confidence level is relatively low.
The high confidence level typically implies that the loss
value may be either very small or very large. Therefore,
when a correct label is derived with a high confidence
level, (easy), the loss value may be either very small or
very large. On the other hand, if the correct label is not
derived (hard), the confidence level should be low, and
therefore, the loss values are distributed around the center
of the loss distribution.

These two observations suggest that there are two important
perspectives in correcting noisy labels; the level of confidence
(easy or hard) and the loss distribution. In other words, the
level of confidence and the size of the training loss value are
mutually independent of each other. In this paper, we claim
that utilizing the confidence level should be useful to correct
the noisy labels. To take the easiness and the hardness into the
consideration, the proposed method employs a method called
curriculum learning where the training starts with easy data
and deals with hard data later by gradually increasing the level
of difficulty. Specifically, we correct the noisy labels from
the easiest data to the hardest ones similarly to curriculum
learning. Correcting the noisy label according to the difficulty
of the data lowers the risk of mislabeling. It also makes the
network robust to the remaining label noise as the training
progresses. On top of this attempt, to improve the accuracy of
the label correction, we pay attention to the loss characteristic
that the easy data should have two extreme loss values (either
very small or very large) while the hard data have loss
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Fig. 1. Loss distribution of CIFAR-10 with a noise rate of 0.5 at the 1st training epoch. (a) Total loss distribution of dataset(purple). (b) Loss distribution
based on whether data is clean(blue) or noisy(red). The point where the two distributions intersect is marked as xintersect. (c) Fine-grained loss distribution
not only based on noisiness but also on easiness; Clean and easy data(pale blue) has the smallest loss average. Clean and hard data(dark blue) has the second
smallest loss average. Noisy and hard data(dark red) has relatively bigger loss average. Noisy and easy data(pale red) has the largest loss on average.

values of the medium size as demonstrated in Figure 1(c). In
this paper, we claim that by considering both the confidence
level and the loss distribution, noisy labels can be effectively
corrected.

The main contributions of this paper are summarized as
follows:
• We apply a curriculum learning to correct the

presumably-noisy labels. Some studies also utilized cur-
riculum learning [2], [4] to solve noisy-label problem.
They regarded correctly-labeled data as easy data while
noisily-labeled data as hard. In contrast, we adopt cur-
riculum learning differently as the method to determine
the order of correcting the noisy labels.

• The proposed method significantly outperforms the com-
pared methods when the noise rate is high, 0.6 or higher.

• The proposed method requires neither additional data for
meta-learning nor additional model for robust training
against noisy labeling.

The rest of this paper is organized as follows. In Section II,
related studies are presented briefly. Section III introduces the
motivation of this study with some background information.
In Section V, the overall process of our method is described.
In Section VI, experimental setting is described, and the
performance of our method is compared with other existing
works. Section VII concludes this paper.

II. RELATED WORK

There are three types of methods for the robust training
with noisy labels. The first approach assumes a small subset
of training data has clean labels and semi-supervised learning
with weak supervision is conducted. Hendrycks et al. [5]
proposed a loss correction method by utilizing a small set of
trusted labels to train a classifier with noisy labels. Zheng et
al. [6] proposed a method where a meta-model corrects noisy
labels while the main model is trained by data with clean
labels.

The second type is to develop a noise-tolerant algorithm
without any other data with clean labels. Kim et al. [7]
proposed an indirect learning method called Negative Learning
to decrease the amount of incorrect information. Zhang et

al. [8] attempted to train a neural network on convex com-
binations of pairs of examples and their labels. Foret et al. [9]
utilized the sharpness information of the loss value to improve
generalization performance.

The last type is to identify noisily-labeled data and improve
performance by either fixing the labels or excluding such data
from training. Reed et al. [10] dealt with noisy and incomplete
labeling by augmenting the prediction objective with a notion
of consistency. Arazo et al. [3] proposed a beta mixture model
to estimate the probability that the data is incorrectly labeled
and to correct the loss value by relying on the network
prediction. Xiao et al. [11] modeled the relationship among
images, class labels, and label noises with a probabilistic
graphical model and integrated it into an end-to-end deep
learning system. Jiang et al. [2], [4] proposed a method of re-
weighting data guided by a MentorNet, which informs the data
is noisy or not. Each assigned weight to the data is considered
when calculating the loss value for training a StudentNet.

Our proposed method can be regarded as one of the last-
type approaches. We improve the network performance by
correcting the label of the noisy data. Previous methods [2]–
[4], [11] focused on separating clean data from noisy ones
based on the observation that loss values diverge in proportion
to the noisiness. However, our proposed method leverages not
only the noisiness but also the easiness of the data. Thereby,
the risk of erroneous modification of the data is reduced,
resulting in a better performance.

III. BACKGROUND

A. Self-Supervision

Generally, supervised learning has the advantage of achiev-
ing high performance. However, labeling a large amount of
training data is error-prone and time-consuming. Therefore,
the risk of mislabeling is pretty high. Self-supervised learning
has emerged as a solution to overcome such mislabeling.
Self-supervised learning typically defines a set of specific
pretext tasks, which can be solved without any labels, such
as context prediction [12], solving jigsaw puzzles [13], and
contrastive learning [14]. By training the network to solve



TABLE I
COMPARISON OF THE TEST ACCURACY(%) OF CIFAR-10 BETWEEN THREE DIFFERENT NEURAL NETWORK SETTINGS. THE ENCODERS AND THE

CLASSIFIERS OF EACH SETTING ARE TRAINED WITH THE DATA STATE(NOISY/CLEAN) SHOWN IN THE TABLE.

Dataset CIFAR-10 Noise Rate(%)

Settings Encoder Classifier 0.0 0.4 0.6 0.8
Setting 1 Noisy Noisy 95.65 82.12 76.40 65.55
Setting 2 Noisy Clean 95.65 86.30 81.94 73.99
Setting 3 Clean Noisy 95.65 95.44 95.55 95.30
SimCLR Self-Supervised Noisy 93.00 89.53 86.14 70.29

these tasks, the network encoder can extract image represen-
tation appropriately and perform downstream tasks such as
image classification. Among many different self-supervision
training methods, we use the contrastive learning [14] to train
the encoder.

In our method, unlike other studies that train the encoder
and the classifier simultaneously, the encoder is trained with
self-supervised learning first, and then the classifier is trained
later, which is an incompatible training procedure with other
approaches.

B. Curriculum Learning

Curriculum Learning (CL) was proposed by Bengio et
al. in 2009 [15]. CL formalizes the cognitive process of
humans and animals that learns more accessible aspects of
a task first and then gradually increases the difficulty level.
By utilizing CL, better generalization performance and faster
optimization can be achieved. Some studies have adopted this
CL paradigm to solve the noisy-labeling problem. In [2], clean
samples are regarded as easy while noisy samples are regarded
as hard. As the training progresses, the level of difficulty
that the neural network can tolerate increases. In this paper,
the concept of curriculum learning is applied differently. As
mentioned earlier, in the proposed method, curriculum learning
is applied to determine the order of correcting the noisy labels.
The easiness is determined by the criterion that whether the
network generates a correct label with a high confidence level.
By correcting the label of easy data first, the proportion of
clean data gradually increases. Therefore, the performance of
the network is improved in proportion to the increasing ratio
of clean data.

IV. SELF-SUPERVISED LEARNING ON NOISY LABEL

Unlike other methods that train their encoder and classifier
concurrently, CLC trains a neural network in two steps. The
encoder in CLC is trained first without a classifier using
the self-supervised learning method of SimCLR [14]. Then,
supervised learning in conjunction with the proposed label
correcting algorithm is applied to train a classifier. To ver-
ify the effectiveness of the self-supervised learning method
for training the encoder, we constructed three experimental
settings with an additional setting (SimCLR) as follows:

• Setting 1 : Both encoder and classifier are trained with
noisy data concurrently.

• Setting 2 : With an encoder trained with noisy data, a
classifier is retrained with clean data after initialization.
The encoder is frozen while retraining the classifier.

• Setting 3 : With an encoder trained with clean data, a
classifier is retrained with noisy data after initialization.
The encoder is frozen while retraining the classifier.

• SimCLR : An encoder is trained with self-supervised
learning first. A classifier is trained with noisy data in
conjunction with the pre-processed encoder.

Supervised learning with a cross-entropy loss function is ap-
plied for Setting 1,2 and 3. Self-supervised learning is applied
to train the encoder of SimCLR. Noisy samples are used when
training the noisy part of the networks. The labels of samples
are changed randomly with the noise rate probability.

Table I summarizes the performance comparison results.
The performance results of the neural network of Setting 1
show that the noisy samples degrades the accuracy consider-
ably as the accuracy of 95.65% with no noisy samples drops
to 65.55% with a noise rate of 0.8%. The neural networks of
Setting 2 and 3, which are partially trained with clean data,
also suffer from some accuracy drop owing to the noisy data,
but the degrees of the accuracy drop are much less than that
of Setting 1. The degree of the accuracy drop of Setting 2
was more severe than that of Setting 3, from which we can
infer that the performance of a neural network depends more
on an encoder rather than a classifier. Unlike Setting 2 and
3, however, no access is allowed to the clean data in the
noisy label task. Therefore, considering the importance of
training the encoder properly, we examine the performance
of the neural network in which an encoder is trained with
self-supervised learning. Compared to Setting 3, the results
of SimCLR suggest that replacing an encoder with a self-
supervised encoder should be effective to mitigate the accuracy
drop.

V. CURRICULUM LABEL CORRECTION

In this paper, we propose a label correction method called
Curriculum Label Correction (CLC). By referring to the loss
distribution, CLC determines whether the data label is noisy
or clean. That is, the data with a large loss value is very likely
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Fig. 2. Distribution differences between the output of a network and the
one-hot label of data for four different cases: Clean+Easy, Clean+Hard,
Noisy+Easy, Noisy+Hard. The output of the network is colored in light gray.
It is calculated via softmax with a sum of 1. The label of the data is colored
in black. It is represented as a one-hot vector and has a value of 1 for only
one label.

to be noisy. Then, as mentioned above, easy data are corrected
first, and hard ones are corrected later as in CL.

Given a set of data samples D = {x, y}M , the loss value
of mini-batch Dm = {x, y}m is calculated as:

lmk (x) = − 1

m

m∑
i=1

yi logSoftmax(Pk(xi)) (1)

where M and m denote the size of the dataset and that of the
mini-batch, respectively, and lmk is derived from calculating the
cross-entropy loss of the softmax output of a neural network
Pk at training epoch k. The loss distribution for mini-batch
Dm implies that the loss of clean data tends to be small and
the loss value of noisy data tends to be big. Therefore, as
shown in Figure 1(b), we assume that the loss distribution of
both clean and noisy data follow a Gaussian distribution and
each distribution has its mean and standard deviation µ1, σ1
and µ2, σ2, respectively:

fclean(x) =
1− α
σ1
√
2π

exp
(
− 1

2

(x− µ1

σ1

)2)
fnoisy(x) =

α

σ2
√
2π

exp
(
− 1

2

(x− µ2

σ2

)2) (2)

where α denotes the noise rate. Therefore, we can approximate
the ratio of noisy to clean data g(x) at point x as follows:

g(x) =
α

1− α
σ1
σ2

exp
(
− (x− µ2)

2

2σ2
2

+
(x− µ1)

2

2σ2
1

)
(3)

and the derivative of g(x) with respect to x is:

dg

dx
= g(x)

(
− x− µ2

σ2
2

+
x− µ1

σ2
1

)
(4)

For simplicity, we assume that standard deviations σ1 and
σ2 are equal so that g(x) is dependent only to α and x. Here,
we can see that when the ratio of noisy samples to clean
samples becomes larger than one, it grows exponentially after
point xintersect, where two distributions intersect as depicted
in Figure 1(b). Therefore, it should be noted that the false-
positive rate should decrease as the threshold, the minimum
value to be judged to be noisy, is set higher.

In CLC, the data is classified into one of the four categories,
not just the clean and noisy data, but also the combinations
of clean/noisy and easy/hard. As mentioned above, easy/hard
denotes the level of confidence of the output of a network, easy
means the confidence level is high, and hard does the opposite.
When a clean sample xclean passes through the network Pk,
it will have a relatively lower loss value than that of noisy
data xnoisy . Among clean samples, the easy one, as shown in
Figure 2(a), would have a loss value close to 0. Hard data, on
the other hand, would result in a bigger loss value than the
easy data as shown in Figure 2(b). In case of noisy data xnoisy ,
the tendency of the loss values is reversed. As the confidence
of the data increases, the loss value grows bigger as shown in
Figure 2(c), and as it decreases, the loss value gets smaller as
shown in Figure 2(d). It is mainly because the one-hot label is
assigned to the wrong one. These tendencies eventually result
in the loss distribution as shown in Figure 1(c). Figure 1(c)
illustrates the loss distribution of the four data categories:
Clean and easy data (pale blue) ; clean and hard data (dark
blue) ; noisy and easy data (pale red) ; noisy and hard data
(dark red).

As mentioned above, the data with a low loss value has
a high probability of being clean. Therefore, no additional
processing is needed. In contrast, the initial label yi of the
data with a high loss value is supposed to be replaced with
a new label. In CLC, the new label is the class of which
softmax value is highest, and it turns out that this label-
correction method achieves an extremely low false-positive
rate. In practice, label correction is conducted for every top
τ percentile of mini-batch Dm at every mini-batch training
step. As the noisy labels are corrected as the mini-batch
training progresses, g(x), the ratio of noisy samples to clean
ones computed by Equation 3, decreases as the noise rate α
decreases. However, at the same time, the false-positive ratio
also increases after the correction. To deal with the adverse
effects of the false positives, we adjust the threshold τ to keep
the false-positive ratio sufficiently low. We decrease the value
of τ in proportion to the square of the completion percentage
while training the network.

Algorithm 1 describes the mini-batch training procedure
in CLC: (Step 1) decrease label-correction percentile τ by
the amount that is proportional to the square of the training
completion percentage, (Step 2) compute the loss value of
mini-batch Dm, (Step 3), set threshold loss lth to be located
at top τ -percentile of the loss values set {l(xi, yi)}, (Step 4-6)
correct the labels of data with the loss values greater than lth,
and (Step 8) compute the loss value of the mini-batch Dm

with corrected labels.



TABLE II
COMPARISON OF TEST ACCURACY(%) ON CIFAR-10 AT VARIOUS SYMMETRIC NOISE RATES. ‘NR’ MEANS THE PERFORMANCE FIGURE IS NOT

REPORTED IN THE RELATED PAPER.

Method CIFAR-10(%) CIFAR-100(%)

0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8
Cross-Entropy 84.05 71.38 49.45 25.13 56.33 42.95 24.68 8.98
M-Correction 94.00 92.80 90.30 74.10 73.70 70.10 59.50 39.50

MentorNet 92.00 91.20 74.20 60.00 73.50 68.50 61.20 35.50
MSLC 93.46 91.42 87.39 69.87 72.51 68.98 60.81 24.32
MixUp 94.00 91.50 86.80 76.90 73.90 66.80 58.80 40.10
NLNL 94.23 92.43 88.32 NR 71.52 66.39 56.51 NR

MentorMix 95.60 94.20 91.30 81.00 78.60 71.30 64.60 41.20
CLC(ours) 92.34 92.26 91.67 90.98 68.62 66.44 64.27 58.59

Algorithm 1: Curriculum Label Correction
Input : preprocessed model P; mini batch Dm;

hyperparameter τ
Output: the loss of the minibatch

1 τepoch ← τ × (1− progress2)
2 For every (xi, yi) in Dm, compute l(xi, yi)
3 Set lth(Dm) to be the (1-τepoch)-th percentile of the

loss {l(xi, yi)}
4 for (xi, yi) do
5 if l(xi, yi) > lth(Dm) then
6 yi ← argmax(P (xi))
7 end
8 end
9 Stop Gradient

10 For every (xi, yi) in Dm, compute l(xi, yi) return
(1/|Dm|)

∑Dm

i=1 li

VI. EXPERIMENT RESULTS

A. Datasets and noisy label settings

We evaluated the performance of the proposed method, CLC
on two image recognition datasets, CIFAR-10 and CIFAR-
100 [16]. Each dataset was used for pre-training and perfor-
mance evaluation. Both CIFAR-10 and CIFAR-100 contain
50,000 images for training and 10,000 images for testing. All
the images have the size of 32 × 32. To generate samples with
noisy labels, the following two methods were used: symmetric
and asymmetric. The symmetric method corrupts the true label
y to all possible classes y′ with a uniform probability of ρ

c ,
where ρ means the noise rate and c denotes the number of
classes, thereby maintaining its original label with probability
1−ρ. Hence, the corrupted label may happen to be the original
label; the original label has a probability of 1 − ρ + ρ

c to
stay clean. The asymmetric method flips the true label y into
another random class y′ with probability ρ. Once the flip is
decided based on the probability ρ, the new label is randomly
selected. Therefore, the number of each class is unbalanced,
unlike the original dataset.

B. Implementation Details

We conducted experiments on the ResNet-50 [17] and
MobileNet V2 [18] network which is composed of an encoder
that extracts features from images and a fully connected (FC)
layer that classifies the input. To make the dataset to be
close to the real situation where we do not know whether
the labeling is accurate or not, we train the whole network
in two steps. We first train the encoder from scratch or load
from ImageNet [19] pre-trained checkpoint. After training the
encoder, the parameters of the encoder are fixed lest they
should be updated, and the FC layer is trained with a dataset
with noisy labels.

The encoder is trained from scratch on CIFAR-10 / CIFAR-
100 with the SimCLR [14], which is an efficient contrastive
learning method. We train the encoder by Stochastic Gradient
Descent (SGD) with a momentum of 0.9, a weight decay
of 0.0001, a learning rate of 0.5, a batch size of 256, and
a cosine learning rate scheduler which degrades the learning
rate according to the cosine function. The maximum number
of iteration of cosine learning rate scheduler is equal to the
total number of training iteration. Augmentation for self-
supervised learning is composed of RANDOM RESIZING,
RANDOM CROPPING, RANDOM HORIZONTAL FLIP, COLOR
JITTERING, AND RANDOM GRAYSCALE.

To utilize the pre-trained encoder, we load the encoder
part from the ImageNet pre-trained checkpoint. We freeze
the first 75-percentile layers of the encoder, and the rest are
set as trainable to perform fine-tuning. In Table II, IV, the
performance of CLC, which uses a pre-trained encoder, is
summarized.

A single FC layer is used as the classifier for ResNet-50.
It is trained for 100 epochs by SGD with a momentum of
0.9, a weight decay of 0, a learning rate of 1.0, and a batch
size of 256. Classifier for MobileNet V2 consists of a dropout
layer followed by a single FC layer. It is trained for 100
epochs by SGD with momentum of 0.9, a learning rate of 0.01,
dropout rate of 0.2, a weight decay of 0.01, and a batch size of
256. Augmentation for training the classifier is composed of
RANDOM RESIZE, RANDOM CROPPING, and RANDOM HOR-



TABLE III
TEST ACCURACY (%) RESULTS OF ABLATION STUDY ON CIFAR-10 AND CIFAR-100.

Dataset CIFAR-10(%) CIFAR-100(%)

Noise Rate 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8
CLC-S 92.34 92.26 91.67 90.98 68.62 66.44 64.27 58.59
CLC-S w/o quadratic 92.55 92.21 91.70 90.85 68.22 66.72 64.19 58.62
CLC-S w/o label correction 91.26 89.37 85.74 71.60 66.45 63.75 59.71 51.19
CLC-S w/o self-supervision 71.32 66.54 17.51 10.00 43.28 34.80 3.60 8.60
CLC-P 92.62 92.30 91.80 91.06 68.71 66.99 64.38 59.67
CLC-P w/o quadratic 92.54 92.31 91.79 90.89 68.49 66.82 64.04 59.53
CLC-P w/o label correction 91.25 89.90 86.56 72.29 66.80 63.96 59.97 52.02
CLC-P w/o fine-tuning 60.39 56.88 50.97 35.14 30.11 22.80 14.49 7.59

IZONTAL FLIP. All experiments are conducted three times, and
then the averages are computed. The experiments are carried
out with PyTorch 1.6 on an NVIDIA TITAN RTX GPU.

C. Evaluation Results

1) Brief descriptions of compared methods: We compared
CLC with previously-reported methods on symmetric and
asymmetric noisy labels with respect to various noise rates.
The compared methods are: CROSS-ENTROPY is a mere
training procedure through cross-entropy loss without any ad-
ditional processing; M-CORRECTION [3] approximates a Beta
distribution Mixture Model (BMM) and re-weights the sam-
ples according to the BMM; MENTORNET [2] trains the main
model with curriculum learning where clean data is regarded
as easy while noisy data as hard. To distinguish clean samples
from noisy ones, MentorNet, another separate neural network,
is pre-trained using meta-data; MSLC [20] trains a model
through meta-learning with noise-free metadata. The network
adaptively obtains rectified soft labels; MIXUP [8] conducts
the convex combinations of pairs of examples and their labels.
Mixed data is used for training; NLNL [21] decreases the risk
of providing incorrect information through so-called negative
learning, which trains CNN by providing a complementary
label that cannot be the correct label; MENTORMIX [4] applies
MixUp to MentorNet; F-CORRECTION [22] estimates the con-
fusion matrix, which informs how likely the label corruption

TABLE IV
COMPARISON OF TEST ACCURACY(%) ON CIFAR-10 WITH OTHER

METHODS AT 40% ASYMMETRIC NOISE.

Method CIFAR-10(%)

0.4
Cross-Entropy 85.00
F-Correction 87.20
M-Correction 87.40
Meta-Learning 89.20

NLNL 89.86
CLC 90.15

occurs for each class label. Then, it provides an end-to-end
training framework; META-LEARNING [23] proposes a noise-
tolerant training algorithm that simulates actual training by
generating synthetic noisy labels first.

2) Performance comparison results: Table II shows the
results for various symmetric noise ratios ranging from 20%
to 80% for ResNet-50 in CIFAR-10 and CIFAR-100. CLC
shows state-of-the-art performance at high noise rates such
as 60% or 80%. However, CLC is not as good as recently-
proposed methods such as MENTORMIX at 20% and 40%
noise rates. This mediocre performance is mainly because
CLC is based on the encoders trained with self-supervised
learning that limits its peak performance to 93% and 70%
for CIFAR-10 and CIFAR-100, respectively. Therefore, as the
performance of the self-supervised learning method on which
CLC is based improves, the performance of CLC will improve
correspondingly.

CLC with MobileNet V2 shows lower performance than
with ResNet-50 due to the poor generalization performance
of the neural network. At noise rates of 20% and 40%, the
test accuracy of CLC is 87.56% and 85.11% for CIFAR-10,
66.18% and 58.37% for CIFAR-100. Nevertheless, at 60% and
80% noise rates, CLC with MobileNet V2 performs better
than some other methods. At noise rates of 60% and 80%,
test accuracy of CLC for CIFAR-10 is 80.42% and 70.26%,
which is better than MentorNet. For CIFAR-100, at 60% and
80% noise rates, CLC outperforms MentorNet and MSLC with
53.29% and 37.56% test accuracy, respectively.

The results on CIFAR-10 with asymmetric noise are sum-
marized in Table IV. We used 20% and 40% of asymmetric
noise because classifying certain classes with asymmetric
noise larger than 50% is practically impossible. As shown in
Table IV, CLC outperforms other compared methods at 40% of
asymmetric noise. For asymmetric noise of 20%, the accuracy
improved from 89.77% to 91.83% with CLC compared to the
neural network trained with Cross-Entropy loss.

3) Ablation Study: To understand what makes CLC effec-
tive better, some of the CLC features is removed, and how
much the removal will affect the performance is measured. The
results summarized in Table III may be analyzed as follows:



• In this paper, we proposed the two types of CLC; CLC-P
denotes the CLC method that uses a fine-tuned encoder
that is pre-trained with ImageNet; CLC-S denotes the
CLC method that uses an encoder that is trained from
scratch via self-supervised learning on CIFAR-10 and
CIFAR-100. The performance of CLC-P outperforms
CLC-S in all cases, but not as noticeable.

• Decreasing the τ value by the amount that is proportional
to the square of the learning completion percentage
(marked as quadratic in Table III) does not significantly
impact CLC-S. However, in case of CLC-P, although
small, there is a performance improvement of about
0.15% on average.

• Label correction plays an essential role in improving the
test accuracy with harsh noise rates. If the label correction
is not included, the test accuracy drops about 20% for
CIFAR-10 at 80% noise rate for CLC-P and CLC-S.

• Fine-tuning is essential for CLC-P, which uses an Ima-
geNet pre-trained encoder. Without fine-tuning, even if
label correction is conducted, the test accuracy drops
significantly.

• CLC-S without self-supervision, which is trained in the
same way as the CROSS-ENTROPY in Table II, shows a
worse test accuracy than CROSS-ENTROPY even though
the label correction is applied.

VII. CONCLUSION

Labeling is an important task for training deep neural
networks. However, labeling is a tedious and error-prone task
to result in a high risk of mislabeling. This mislabeling will
severely degrade the performance. In this paper, we proposed
a noise-tolerant learning algorithm termed Curriculum Label
Correction (CLC). CLC adopted curriculum learning to correct
the noisy label efficiently. While several existing methods set a
threshold to separate the clean data from the noisy data, CLC
classified samples as easy or hard ones with reference to the
loss distribution to make use of curriculum learning. Compared
with other existing methods, CLC showed better performance
on CIFAR-10 at a high noise rate, 91.85% on 0.6 noise rate,
and 91.10% on 0.8 noise rate. Finally, as the performance of
self-supervised learning gets improved, we expect our method
to improve accordingly as well.
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