
   

 EdgeRL: A Light-Weight C/C++ Framework for On-

Device Reinforcement Learning  
 

Sang-Soo Park, Dong-Hee Kim, Jun-Gu Kang, Ki-Seok Chung* 

Dept. of Electronic Engineering 

Hanyang University 

Seoul. South Korea 

po092000@hanyang.ac.kr, dongheekim@hanyang.ac.kr, gjk6626@hanyang.ac.kr, kchung@hanyang.ac.kr* 

 

Abstract— Advances in reinforcement learning (RL) have 

achieved significant success in many areas. However, RL 

typically requires a large amount of computation and memory. 

Often RL implemented in Python is too heavy to run on a 

resource-limited edge device. Therefore, making the RL model 

lighter is very important for on-device machine learning. In this 

paper, we propose a lightweight C/C++ RL framework aiming 

for RL on edge devices. The proposed RL framework is designed 

to run on a single-core processor that is typically included in a 

resource-limited embedded platform. The evaluation using 

OpenAI Gym’s CartPole demonstration shows that the model 

can be trained on an edge device in real-time. 
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I.  INTRODUCTION  

Widespread adoption of artificial intelligence (AI) is 
rapidly changing our life. In particularly, deep neural network 
(DNN) attracts lots of attention due to its excellent 
performance in many application areas [1]. It has achieved 
remarkable success in computer vision, speech recognition, and 
control engineering. 

One of the most successful deep learning methods is 
reinforcement learning (RL) [2]. The goal of RL is to enable an 
agent to learn a good strategy from repeated trials and received 
feedbacks on the trials. Especially, RL has shown great success 
in the field of control engineering [3]. Unlike the other DNN 
methods, the agent in RL explores their environment and learns 
a desirable action by itself. In other words, the agent is capable 
of actively adapting the environment to maximize the reward. 
Exploring a large design space to find an appropriate action 
through repeated trials typically requires a large amount of 
computation and memory usage.  

Python is a high-level programming language, and one of 
its advantages is that it is very easy to read and write a Python 
program. Also, it is very easy to learn. Therefore, Python is one 
of the most popular programming languages for implementing 
machine learning (ML) models. On the other hand, ML models 
written in Python are known to be quite heavy in the sense that 
the execution speed is slow, and the memory usage level is 
high. Therefore, it may not be adequate to run the Python 
implementation on resource-limited embedded edge devices [4]. 

In this paper, we propose a lightweight C/C++ RL 

framework called EdgeRL aiming for RL on resource-limited 

edge devices. EdgeRL is designed to run on a single-core 

processor that has the runtime environment only for C/C++. 

The evaluation results show that on-device RL on an edge 

device is practically feasible using EdgeRL. 

II. DNN FRAMEWORKS FOR REINFORCEMENT LEARNING  

A. Reinforcement Learning (RL) 

RL is an ML algorithm that learns by itself through many 
trials. Fig. 1 shows a pictorial representation of the RL process. 
In RL, the agent learns from interactions with an environment 
without any explicit supervision. The agent interacts with the 
environment by actions (at). It receives the feedback of its 
action from the environment (rt) in terms of reward or penalty 
and observes the change of the environment as the result of the 
action. That is, the state of the environment (st) at time t is 
continuously monitored by performing action at and receiving 
feedback rt. The agent moves to the next state st+1 after 
receiving a reward rt, with probability P(st+1|st, at). The 
goal of the agent is to maximize the cumulative reward over 
time through its choices of actions. 

 

Figure 1. Process diagram of reinforcement learning 

B. Framework Architecture 

In a typical RL framework, the agent and the environment 
are implemented in Python. The feedback between the agent 
and the environment is implemented by way of exchanging 
memory objects in Python [4]. However, both the computation 
capability and the size of the memory on an edge device may 
not be sufficient to run RL in Python because interaction 
between the agent and the environment requires a huge amount 
of computation and memory usage. To solve this problem, we 



   

propose a C/C++ RL framework that can run on an edge device 
without Python.  

 

Figure 2. Archiecture of EdgeRL 

 

Fig. 2 shows the overall architecture of the proposed RL 
framework, called EdgRL. OpenAI Gym’s CartPole [5] is 
chosen as the target problem to solve through RL. The goal of 
CartPole is to move the cart along a track to prevent the 
attached pole from falling over. All the information exchange 
is conducted using the CSV files. The agent sends actions 
(action.csv) to the environment (CartPole) and receives 
rewards (reward.csv) and states (state.csv) from the 
environment. 

III. EXPERIMENTS AND DISCUSSIONS 

A. Experimental Setup 

In this paper, the target edge device that the proposed RL 
framework will be run is an NXP’s i.MX6 SoC platform. The 
target device is equipped with a single ARM Cortex A9 
processor with the maximum clock frequency of 1GHz and a 

512MB DDR3 memory module. Cortex A9 has a 128bit 
NEON unit for single instruction multiple data (SIMD) 
processing.  To evaluate the performance of real-time training, 
the proposed RL framework was run both on a workstation and 
on the target board. The detailed specification of the two 
platforms is shown in Table I. 

TABLE I.  SPECIFICATION OF  PLATFORMS USED FOR EVALUATION 

 Workstation Edge device 

Processor/# of Cores Intel i7-9700K (8) ARM Cortex A9 (1) 

Processor Clock 3.6GHz 1.0GHz 

Computing Power 424.3GFLOPS 1GFLOPS 

Memory Size 32GB DDR4 512MB DDR3 

OS Ubuntu 16.04 Yocto 1.8 

Library OpenBLAS 

For performance evaluation, OpenAI Gym was used as the 
workload. OpenAI Gym is one of the most widely used 
benchmarks in RL. The agent is configured with a multi-layer 
perceptron (MLP) model (4-64-64-2, Sigmoid, REINFORCE 
algorithm), and the environment is set to CartPole v0. The 
score curve and the training time have been compared.  

B. Score curve and Execution time  

Fig. 3 shows the score results when EdgeRL is trained on-
the target platform in real time. A score on CartPole indicates 
how well the user has played the game, and the higher the 

score, the better [5].  In the experiment, the initial score is -100, 
and as the learning progresses, the score increases. The number 
of episodes is about 1,000. The highest score was achieved in 
around 850 episodes. The proposed EdgeRL is trained on both 
the workstation and the target edge platform to compare the 
execution time. Table II shows the results of the training time 
required for about 950 episodes. The raw computational power 
of the workstation is about 400 times better than that of the 
target platform, but the execution time is about 2.6 times better. 
This result shows that on-device RL on an edge device is 
practically feasible using EdgeRL. 

 

 

Figure 3. Score graph of CartPole  

TABLE II.  EXECUTION TIME OF EDGERL ON CARTPOLE 

 Workstation Edge device 

Episodes 948 959 

Execution Time 307s 802s 

IV. CONCLUSION 

In this paper, a light-weight C/C++ RL framework for an 
edge device was presented. Experiments results confirmed that 
the proposed C/C++ RL framework can effectively train a 
problem in real time on an embedded edge device. 
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