

 EdgeRL: A Light-Weight C/C++ Framework for On-

Device Reinforcement Learning

Sang-Soo Park, Dong-Hee Kim, Jun-Gu Kang, Ki-Seok Chung*

Dept. of Electronic Engineering

Hanyang University

Seoul. South Korea

po092000@hanyang.ac.kr, dongheekim@hanyang.ac.kr, gjk6626@hanyang.ac.kr, kchung@hanyang.ac.kr*

Abstract— Advances in reinforcement learning (RL) have

achieved significant success in many areas. However, RL

typically requires a large amount of computation and memory.

Often RL implemented in Python is too heavy to run on a

resource-limited edge device. Therefore, making the RL model

lighter is very important for on-device machine learning. In this

paper, we propose a lightweight C/C++ RL framework aiming

for RL on edge devices. The proposed RL framework is designed

to run on a single-core processor that is typically included in a

resource-limited embedded platform. The evaluation using

OpenAI Gym’s CartPole demonstration shows that the model

can be trained on an edge device in real-time.

Keywords; Reinforcement Learning; On-device learning; Edge

device;

I. INTRODUCTION

Widespread adoption of artificial intelligence (AI) is
rapidly changing our life. In particularly, deep neural network
(DNN) attracts lots of attention due to its excellent
performance in many application areas [1]. It has achieved
remarkable success in computer vision, speech recognition, and
control engineering.

One of the most successful deep learning methods is
reinforcement learning (RL) [2]. The goal of RL is to enable an
agent to learn a good strategy from repeated trials and received
feedbacks on the trials. Especially, RL has shown great success
in the field of control engineering [3]. Unlike the other DNN
methods, the agent in RL explores their environment and learns
a desirable action by itself. In other words, the agent is capable
of actively adapting the environment to maximize the reward.
Exploring a large design space to find an appropriate action
through repeated trials typically requires a large amount of
computation and memory usage.

Python is a high-level programming language, and one of
its advantages is that it is very easy to read and write a Python
program. Also, it is very easy to learn. Therefore, Python is one
of the most popular programming languages for implementing
machine learning (ML) models. On the other hand, ML models
written in Python are known to be quite heavy in the sense that
the execution speed is slow, and the memory usage level is
high. Therefore, it may not be adequate to run the Python
implementation on resource-limited embedded edge devices [4].

In this paper, we propose a lightweight C/C++ RL

framework called EdgeRL aiming for RL on resource-limited

edge devices. EdgeRL is designed to run on a single-core

processor that has the runtime environment only for C/C++.

The evaluation results show that on-device RL on an edge

device is practically feasible using EdgeRL.

II. DNN FRAMEWORKS FOR REINFORCEMENT LEARNING

A. Reinforcement Learning (RL)

RL is an ML algorithm that learns by itself through many
trials. Fig. 1 shows a pictorial representation of the RL process.
In RL, the agent learns from interactions with an environment
without any explicit supervision. The agent interacts with the
environment by actions (at). It receives the feedback of its
action from the environment (rt) in terms of reward or penalty
and observes the change of the environment as the result of the
action. That is, the state of the environment (st) at time t is
continuously monitored by performing action at and receiving
feedback rt. The agent moves to the next state st+1 after
receiving a reward rt, with probability P(st+1|st, at). The
goal of the agent is to maximize the cumulative reward over
time through its choices of actions.

Figure 1. Process diagram of reinforcement learning

B. Framework Architecture

In a typical RL framework, the agent and the environment
are implemented in Python. The feedback between the agent
and the environment is implemented by way of exchanging
memory objects in Python [4]. However, both the computation
capability and the size of the memory on an edge device may
not be sufficient to run RL in Python because interaction
between the agent and the environment requires a huge amount
of computation and memory usage. To solve this problem, we

propose a C/C++ RL framework that can run on an edge device
without Python.

Figure 2. Archiecture of EdgeRL

Fig. 2 shows the overall architecture of the proposed RL
framework, called EdgRL. OpenAI Gym’s CartPole [5] is
chosen as the target problem to solve through RL. The goal of
CartPole is to move the cart along a track to prevent the
attached pole from falling over. All the information exchange
is conducted using the CSV files. The agent sends actions
(action.csv) to the environment (CartPole) and receives
rewards (reward.csv) and states (state.csv) from the
environment.

III. EXPERIMENTS AND DISCUSSIONS

A. Experimental Setup

In this paper, the target edge device that the proposed RL
framework will be run is an NXP’s i.MX6 SoC platform. The
target device is equipped with a single ARM Cortex A9
processor with the maximum clock frequency of 1GHz and a

512MB DDR3 memory module. Cortex A9 has a 128bit
NEON unit for single instruction multiple data (SIMD)
processing. To evaluate the performance of real-time training,
the proposed RL framework was run both on a workstation and
on the target board. The detailed specification of the two
platforms is shown in Table I.

TABLE I. SPECIFICATION OF PLATFORMS USED FOR EVALUATION

 Workstation Edge device

Processor/# of Cores Intel i7-9700K (8) ARM Cortex A9 (1)

Processor Clock 3.6GHz 1.0GHz

Computing Power 424.3GFLOPS 1GFLOPS

Memory Size 32GB DDR4 512MB DDR3

OS Ubuntu 16.04 Yocto 1.8

Library OpenBLAS

For performance evaluation, OpenAI Gym was used as the
workload. OpenAI Gym is one of the most widely used
benchmarks in RL. The agent is configured with a multi-layer
perceptron (MLP) model (4-64-64-2, Sigmoid, REINFORCE
algorithm), and the environment is set to CartPole v0. The
score curve and the training time have been compared.

B. Score curve and Execution time

Fig. 3 shows the score results when EdgeRL is trained on-
the target platform in real time. A score on CartPole indicates
how well the user has played the game, and the higher the

score, the better [5]. In the experiment, the initial score is -100,
and as the learning progresses, the score increases. The number
of episodes is about 1,000. The highest score was achieved in
around 850 episodes. The proposed EdgeRL is trained on both
the workstation and the target edge platform to compare the
execution time. Table II shows the results of the training time
required for about 950 episodes. The raw computational power
of the workstation is about 400 times better than that of the
target platform, but the execution time is about 2.6 times better.
This result shows that on-device RL on an edge device is
practically feasible using EdgeRL.

Figure 3. Score graph of CartPole

TABLE II. EXECUTION TIME OF EDGERL ON CARTPOLE

 Workstation Edge device

Episodes 948 959

Execution Time 307s 802s

IV. CONCLUSION

In this paper, a light-weight C/C++ RL framework for an
edge device was presented. Experiments results confirmed that
the proposed C/C++ RL framework can effectively train a
problem in real time on an embedded edge device.

ACKNOWLEDGMENT

This work was supported by Institute of Information &
communications Technology Planning & Evaluation (IITP)
grant funded by the Korea government (MSIT) (No. 2020-0-
01304, Development of Self-learnable Mobile Recursive
Neural Network Processor Technology).

REFERENCES

[1] Sze, V., Chen, Y. H., Yang, T. J., & Emer, J. S. (2017). Efficient
processing of deep neural networks: A tutorial and survey. Proceedings
of the IEEE, 105(12), 2295-2329.

[2] Arulkumaran, K., Deisenroth, M. P., Brundage, M., & Bharath, A. A.
(2017). Deep reinforcement learning: A brief survey. IEEE Signal
Processing Magazine, 34(6), 26-38.

[3] Ibarz, J., Tan, J., Finn, C., Kalakrishnan, M., Pastor, P., & Levine, S.
(2021). How to train your robot with deep reinforcement learning:
lessons we have learned. The International Journal of Robotics Research,
40(4-5), 698-721.

[4] Watanabe, H., Tsukada, M., & Matsutani, H. (2020). An FPGA-Based
On-Device Reinforcement Learning Approach using Online Sequential
Learning. arXiv preprint arXiv:2005.04646.

[5] Brockman, G., Cheung, V., Pettersson, L., Schneider, J., Schulman, J.,
Tang, J., & Zaremba, W. (2016). Openai gym. arXiv preprint
arXiv:1606.01540.

