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Video object detection (VOD) is a challenging task to resolve ambiguities owing to various issues such as motion blur and occlusion.
Although various types of ambiguities will take place per pixels in an image, flow fields make equal contributions for VOD across the
image. This may increase false positive (FP) results. In this paper, we propose a method that utilizes motion uncertainty for VOD. The
trained optical flow estimation model helps detector to suppress unreliable flow fields in order to avoid misaggregation which causes
mislocalization. Our proposed method improves mean average precision by 1.27 and decreases the FP rate by 10.59%. This verifies that
utilizing motion uncertainty for video recognition tasks is very effective.
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1 INTRODUCTION

Today, deep learning has actively been utilized in various vision tasks. Particularly, deep-learning-based object detection
has been adopted in many fields such as autonomous driving and CCTV surveillance where highly reliable operation
is required. For instance, an autonomous vehicle should be able to detect cars, pedestrians, bicycles or traffic lights
with a high accuracy. Typically, to improve accuracy, multiple types of sensors are employed. Among them, the LiDAR
sensor can detect the object accurately by generating precise three-dimensional images. However, the cost of the
sensor is relatively high and performance degrades considerably in an adverse weather condition. Therefore, today, the
camera sensor is arguably the most commonly used sensor for object detection [24]. Camera sensors typically take
temporal series of images as input. Using a single image detector (e.g., R-FCN [7]) for these video data may show an
unacceptably-poor performance owning to video-specific ambiguity issues such as occlusion, motion blur, rare pose,
and defocus, etc. To resolve such issues, in video object detection (VOD), temporal correlation among successive images
may be taken into consideration to take advantages of the appearances in neighboring frames.

Optical flow, the pattern of pixel-wise motions between two consecutive image frames, is commonly regarded as an
excellent method to model the temporal correlation. Several studies proposed the optical-flow-based VOD [22, 26, 27].
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Fig. 1. The encoder-decoder network of FlowNetU. FlowNetU takes a concatenation of input images as input and estimates optical
flow (above) and its variance (below). The variance is used for reliable VOD.

Specifically, they capture motion information among adjacent frames and detect objects that are difficult to recognize
with only one image. Several conventional approaches were proposed to estimate an optical flow accurately [19, 25]. In
a deep learning model for optical flow estimation, a network for predicting the optical flow should be trained [8, 13].
However, most existing methods overlook the importance of the level of uncertainty in the output. Unless the uncertainty
is properly taken into consideration, the detector may fail to predict the motion of objects with erroneous flow fields,
thereby typically leading to a high increase in the false positive (FP) rate.

To resolve this concern, we propose a method for optical flow estimation in this paper. In the proposed method
called FlowNetU, the level of uncertainty is predicted, and this information is utilized in VOD. Our method assumes the
distribution of flow fields to be Gaussian and estimates the uncertainty of each flow field vector. FlowNetU employs
FlowNet [8] as the base model for optical flow estimation. FlowNetU is trained with a new loss function in contrast
to the mean square error loss used in [8]. Specifically, a maximum likelihood estimation for Gaussian distribution to
utilize the variance of flow fields is used as the new loss function. We show that our method predicts flow uncertainty
more accurately than other existing methods on Sintel [5] and Middlebury [1] benchmarks. Additional experiment was
carried out to confirm the effect of flow uncertainty. Both FlowNetS [8] and FlowNetU are used as the flow network of
the VOD framework. The experimental results demonstrate that our approach offers a better detection accuracy and a
lower false positive rate. For ImageNet VID, we improved mean average precision (mAP) by 1.27 and FP by -10.59%.

2 RELATEDWORK

Optical Flow Estimation. Based on the mathematical formulation of the Horn-Schunck method [12], variational
optimization is widely adopted to estimate optical flow [3, 19]. FlowNet [8] is the first optical flow estimation method
using convolutional neural network (CNN). Quite a few models such as FlowNet2 [13] and PWC-Net [21] followed.
These works measured only a deterministic flow field value. In contrast, we train an optical flow estimation model
considering the distribution of the flow field and define the loss function to estimate uncertainty, which is based on
FlowNet [8].
Uncertainty Estimation for Object Detection. Deep networks have achieved a great success in vision tasks. In spite
of their high accuracy, there is a problem that the model tends to be overconfident about the result. This has raised the
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need of confidence measure and calibration. The authors of [14] proposed a method to make vision task model robust
to noisy data by measuring two types of uncertainty, aleatoric and epistemic. Aleatoric uncertainty is data-inherent
uncertainty and epistemic uncertainty is uncertainty induced by the model itself. Aleatoric uncertainty is measured by
calculating the mean and the variance from the output, while epistemic uncertainty is estimated by the distribution of
the network’s weight. A Bayesian neural network, e.g., Monte Carlo dropout [9], is used to compute the distribution.

There have been several works to measure the uncertainty in the object detection in a single image. The authors
of [11] modeled the coordinates of bounding boxes as Gaussian distribution and calculated Kullback-Leibler (KL)
divergence between the prediction and the ground-truth (GT) box. The authors of [6] also assumed that the location of
bounding boxes should follow Gaussian distribution and achieved better performance than YOLOv3 [17]. Motivated by
this work, we make an assumption that a flow field follows Gaussian distribution.
Object Detection in Video. Video is a series of successive images. While many single image detectors have achieved
a high accuracy in the object detection task [7, 18], standalone video object detectors often suffer from errors due to
various ambiguities as mentioned above. To overcome this weakness, optical flow is used to estimate the difference in
object motions in consecutive frames. DFF [27] and FGFA [26] are motion-based VOD methods exploiting optical flow.
In these methods, optical flow propagates the features of adjacent frames to reinforce the weak feature of the current
frame. MANet [22] calculates the optical flow in the pixel-level calibration and helps detection in the instance-level
calibration. In our experiment, we adopt FGFA as the base VOD framework. Contrary to existing works, our method
takes into account uncertainty information inherent in flow fields to allow the detector to identify reliable flow fields.

3 METHOD

Our method proceeds in two steps. At first, FlowNetU is trained end-to-end with Gaussian modeling for optical flow.
Then, VOD is performed with the trained FlowNetU. In this VOD stage, a new weight is introduced to improve the
detection accuracy with the estimated uncertainty from FlowNetU.
Gaussian Modeling for Optical Flow. A CNN-based optical flow estimation model takes a pair of consecutive images
𝑥 = (𝐼1, 𝐼2) as input and outputs the corresponding dense flowfield F̂ = (𝑢, 𝑣). Given dataset𝐷 = {(𝑥, F) |F = (𝑢𝐺𝑇 , 𝑣𝐺𝑇 )},
the model learns a mapping function 𝑔 : 𝑥 → F. FlowNet [8] is the first work to learn the mapping function using an
end-to-end trainable CNN architecture and achieves a good performance for optical flow estimation. In this work, we
train FlowNetU which can estimate uncertainty of a flow field. FlowNetU is an encoder-decoder network which is based
on [8]. The encoder network is a series of convolution layers which will generate high-dimensional down-sampled
features from input images.

As shown in Fig 2, the decoder network generates flow field vectors and variances for each pixel. In the decoder, the
features pass through the deconvolution layers (blue 𝑑𝑒𝑐𝑜𝑛𝑣 arrow) and the flow prediction layers (gray 𝑓 𝑙𝑜𝑤 arrow)
generate the intermediate features. The intermediate features are concatenated by the skip-connected features from the
corresponding layers in the encoder (green 𝑐𝑜𝑛𝑣 arrow) and the previously generated flow fields and variances (red
arrow). Each flow field is used to calculate a multiscale loss. The multiscale loss assigns a smaller weight to the lower
resolution feature and vice versa. In [8], the network is trained by minimizing the average Euclidean distance between
each flow field and the GT which is called average endpoint error (AEPE).

𝐴𝐸𝑃𝐸 =
1
𝑁

𝑁∑
𝑖=1

√
(𝑢𝑖 − 𝑢𝐺𝑇

𝑖
)2 + (𝑣𝑖 − 𝑣𝐺𝑇

𝑖
)2 (1)
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Fig. 2. The decoder architecture of FlowNetU. A deconvoluted feature (blue box), a skip-connected feature from the encoder (green
box) and a predicted flow field and a variance (red box) are concatenated to become the next feature. The intermediate flow fields
and variances are used to calculate the multiscale NLL loss with the ground-truth. The lower resolution flow fields are assigned with
lower weights.

However, this loss function compares only the deterministic value of the flow field and the GT. Therefore the model does
not know how reliable the output is. Instead of this AEPE loss, we design a new loss function to consider the uncertainty
of the flow field. Specifically, we model the distribution of the flow field and use the variance of the distribution as the
uncertainty as suggested in [14].

If 𝑝 (F|𝑥, 𝐷) is the true distribution of the flow field, the mean 𝑝 (F|𝑥, 𝐷) will be a flow field value and the variance
will be uncertainty. Since the flow field has two mean values, 𝜇𝑥 and 𝜇𝑦 for 𝑥 and 𝑦-direction, respectively, the variance
also has two values, Σ2

𝑥 and Σ2
𝑦 for both directions. With these variables, the flow field can be modeled by Gaussian

distribution 𝑝 (F|𝑥) = 𝑁 (F; 𝜇𝑥 , 𝜇𝑦, Σ2
𝑥 , Σ

2
𝑦). To deliver the variance through the network, the deconvolution layers in

the decoder are expanded by two additional channels. The objective of this task is to maximize the likelihood:

𝐿(𝑢𝐺𝑇 |𝜇𝑥 , Σ2
𝑥 ) =

1√
2Σ2
𝑥

exp
(
− (𝑢𝐺𝑇 − 𝑢)2

2Σ2
𝑥

)
(2)

Maximizing the equation (2) is identical to minimizing the negative log likelihood (NLL):

𝑁𝐿𝐿 = − log(𝐿(𝑢𝐺𝑇 |𝜇𝑥 , Σ2
𝑥 )

=
(𝑢𝐺𝑇 − 𝑢)2

2Σ2
𝑥

+ log Σ2
𝑥

(3)

A loss function for the 𝑦-direction flow can be defined similarly. The NLL loss consists of two terms: EPE term
((𝑢𝐺𝑇 −𝑢)2/2Σ2

𝑥 ) and uncertainty term (log Σ2
𝑥 ). When the variance goes high, the uncertainty term becomes significant

while the EPE term is suppressed. This has effects that the model learns more from the pixels that may misguide the
motion. Conversely, a low variance gives a bigger penalty to the model from the EPE term. As a result, the EPE term
becomes more significant since the model is confident about the output.
Flow Field Uncertainty Weight. We claim that the accuracy of the video object detection is improved by applying a
Manuscript submitted to ACM
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weight with uncertainty predicted by FlowNetU. As mentioned above, we use FGFA [26] as the base VOD framework.
We construct a modified VOD framework which is called FlowNetU-FGFA. The FlowNetU-FGFA framework is composed
mainly of four trainable networks according to [26]. First, the feature network extracts features from a reference frame
and the current frame. We denote the reference frame by 𝐼 𝑗 and the current frame 𝐼𝑖 . Next, the flow network F computes
the flow fieldM 𝑗→𝑖 between the two frames.

M 𝑗→𝑖 = F (𝐼𝑖 , 𝐼 𝑗 ) (4)

The feature of the reference frame is warped by a warping functionW,

𝑓𝑗→𝑖 = W(𝑓𝑗 ,M 𝑗→𝑖 ) (5)

The warping functionW is a bilinear interpolation by default. The warped features are gathered according to cosine
similarity. The embedding network E projects the warped features into a new dimension for similarity measure. A
cosine similarity weight at pixel 𝑝 is calculated with embedded features of the current frame 𝑓 𝑒

𝑖
= E(𝑓𝑖 ) and the warped

features 𝑓 𝑒
𝑗→𝑖

= E(𝑓𝑗→𝑖 ).

𝑤 𝑗→𝑖 (𝑝) = exp
( 𝑓 𝑒

𝑗→𝑖
(𝑝) · 𝑓 𝑒

𝑖
(𝑝)

|𝑓 𝑒
𝑗→𝑖

(𝑝) | · |𝑓 𝑒
𝑖
(𝑝) |

)
(6)

Unlike [26], a flow field uncertainty weight is multiplied by the cosine similarity. The total weight for the reference
frame 𝑗 to the current frame 𝑖 is as follows:

𝑊𝑗→𝑖 = 𝑤 𝑗→𝑖 · 𝜎 (−Σ) (7)

where 𝜎 is sigmoid function 𝜎 (𝑥) = 1/(1 + exp(−𝑥)) and𝑤 𝑗→𝑖 is cosine similarity weight. To calculate the weight, 𝑥
and 𝑦-direction variances must be combined into a value

Σ =

√
Σ2
𝑥 + Σ2

𝑦 (8)

Then the aggregated feature is calculated as

𝑓𝑖 =

𝑖+𝐾∑
𝑗=𝑖−𝐾

𝑊𝑗→𝑖 𝑓𝑗→𝑖 (9)

Finally, the aggregated feature is fed to the detection network and the detection results (i.e., object class and bounding
box) are produced on the current frame 𝑖 . With the uncertainty weight, the aggregated feature lowers the contribution
of two types of features: (1) features that are far different from the feature of the current frame and (2) features that
have high uncertainty.

4 EXPERIMENTS

4.1 Implementation Details

Dataset. FlyingChairs [8] is a commonly used dataset for optical flow estimation. The dataset consists of 22,872 pairs
of consecutive images and the GT flow. We randomly selected 22,232 pairs for the training set and 640 pairs for the test
set. We train and evaluate FlowNetU-based detector on the ImageNet dataset. ImageNet VID [20] is a large scale video
object detection dataset. The ImageNet VID dataset contains 3,862 10-frame video snippets for training and 555 video
snippets for evaluation. It contains 30 object categories which is a subset of 200 categories in ImageNet DET.
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Fig. 3. Examples of (a), (b) input images, (c) predicted flows, (d) predicted variances of FlowNetU on Sintel Clean.

Training and Testing. For training FlowNetU, we only use FlowNetS architecture as the base model owing to its faster
training and inference speed. As shown in Table 1, FlowNetS is about twice faster than FlowNetC in runtime.

Table 1. Per-frame runtime on NVIDIA
RTX Titan GPU for each methods. Re-
sult of [8].

Method Time (s)

FlowNetS 0.08
FlowNetC 0.15

We train FlowNetS and FlowNetU on the FlyingChairs dataset. Each image
pair is randomly cropped to a resolution of 320 × 448 and flipped horizontally
and vertically with probability 𝑝 = 0.5. We use 64 as the batch size per GPU on
an NVIDIA RTX 3090 × 2 environment. Starting from the learning rate 1e-4, we
divide it by 2 at [50K, 65K, 100K, 125K] iterations with Adam optimizer [15]. No
fine-tuning was applied.

In the VOD stage, the detector is trained using the pretrained FlowNetS and
FlowNetU. We used the network architecture and the two-phase learning scheme
of FGFA [26]. In the first phase, a single image detector and a feature extractor
are trained on ImageNet DET. In the second phase, the whole networks including the flow network are trained on
ImageNet VID. In the SGD training, the networks are trained for 120k and 60k iterations after 500 warm-up iterations.
The initial learning rate was set to 1e-3, and the learning rate decays to 1e-4 at 80k, 40k in the first and the second phase,
respectively. Data augmentation is performed during training including geometric transforms: resizing and random
horizontal flip with probability 𝑝 = 0.5. For resizing, the size of the smallest and the largest side of input images are
resized to each 800 and 1333, respectively. We conducted the experiments using an NVIDIA V100 × 4 and one batch per
GPU.

4.2 Evaluation of Uncertainty Measure

We visualize the uncertainty using the Sintel benchmark. Figure 3 shows scene examples from the Sintel dataset. The
first two columns are input images. The third column is the predicted flows and the fourth column is the predicted
variances of corresponding flows. The variance increases from blue to red.

For quantitative evaluation, we use commonly-used sparsification plots to assess the quality of the uncertainty
measure [16, 23]. This metric compares two curves: the error curve and the Oracle curve which denotes the true error
Manuscript submitted to ACM
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Fig. 4. Sparsification plot on the clear Sintel train-set. The Oracle curve indicates the best ranking of uncertainty.

Table 2. Area Under Curve (AUC) of error curve on Sintel and Middlebury benchmarks.

Sintel Middlebury
Uncertainty measure AUC AUC

Gradient [2] 1.022 0.971
Energy [4] 0.470 0.498
Learned [16] 0.474 0.496

ProbClassicA [23] - 0.466
Proposed 0.415 0.561
Oracle 0.223 0.297

curve. The error curve is plotted with every removal of a fraction of pixels in a descending order of the estimated
variance. The AEPE values of the remaining pixels are normalized. Similarly, the true error curve is drawn in order
of the error between the prediction and the GT. If the estimated variance is close to the actual uncertainty, the error
curve should be close to the Oracle with a low area under curve (AUC) value. The Oracle provides the best order of
uncertainties under the assumption that a higher uncertainty causes a higher error. Figure 4 shows the plot of our
method. Table 2 shows the performance of the uncertainty measure of various methods from [2, 16, 23]. We use the
results of a gradient-based method [2], an energy-based one [4] and a supervised learning [16] a confidence-measure
one from [23]. These results demonstrate that our uncertainty measure works well in detecting reliable flow estimates.

4.3 Experiments on ImageNet VID

We used FlowNetS-FGFA (FlowNetS-FGFA) as the baseline method. To demonstrate the effectiveness of the uncertainty
in flow field in detection, we compare the performance of our method (FlowNetU-FGFA) with the baseline. For a fair
comparison, FlowNetS-FGFA and FlowNetU-FGFA are trained and evaluated using the same scheme. The result of
FlowNetS-FGFA is different from that of [26] because we use Faster-RCNN [18] instead of R-FCN [7] as a single image
detector. As analyzed in [26], the GT objects are categorized into 𝑓 𝑎𝑠𝑡 ,𝑚𝑒𝑑𝑖𝑢𝑚 and 𝑠𝑙𝑜𝑤 motions according to the
speed of moving objects. The speed of a moving object was calculated by intersection over union (IoU) of the box of the
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objects in the nearby frames. In [26], the IoU is dubbed as motion IoU. The GT object is classified as 𝑓 𝑎𝑠𝑡 (motion IoU <
0.7),𝑚𝑒𝑑𝑖𝑢𝑚 (0.7 ≤ motion IoU ≤ 0.9) and 𝑠𝑙𝑜𝑤 (motion IoU > 0.9). The mAP is widely used in object detection tasks

Table 3. Accuracy comparison of our method with the baseline on ImageNet VID. ResNet-101 [10] is used as the feature network for
both methods.

FlowNetS-FGFA FlowNetU-FGFA (proposed)

mAP (%) 75.79 77.06
mAP (%) (𝑓 𝑎𝑠𝑡 ) 51.54 52.11
mAP (%) (𝑚𝑒𝑑𝑖𝑢𝑚) 74.41 75.36
mAP (%) (𝑠𝑙𝑜𝑤 ) 83.27 84.93

as a performance metric. To compute the mAP, the IoU threshold is set to 0.5. Table 3 summarizes the performance
of the proposed method and the baseline on ImageNet VID. The mAP of the proposed FlowNetU-FGFA improves by
1.27 compared to FlowNetS-FGFA. In addition, the mAP increases by 0.57, 0.95, 1.66 for 𝑓 𝑎𝑠𝑡 ,𝑚𝑒𝑑𝑖𝑢𝑚 and 𝑠𝑙𝑜𝑤 motion,
respectively. Table 4 shows numerical evaluation of the true positive (TP) and the FP of the baseline and those of

Table 4. Comparison of baseline and our approach for the number of TPs and FPs on ImageNet VID.

FlowNetS-FGFA FlowNetU-FGFA (proposed) Variation rate (%)

TP 197,260 196,357 -0.46
FP 71,968 64,347 -10.59

FlowNetU-FGFA detections. The number of TP’s and FP’s was calculated with the settings of the IoU threshold of 0.5
and the score threshold of 0.5. Predicted boxes with scores lower than the threshold are considered as negative. For
ImageNet VID, FlowNet-FGFA reduces both TP and FP. FlowNetU-FGFA decreases the TP rate by 0.46% and the FP
one by 10.59%. Unlike the original implementation, FlowNetU-FGFA warps uncertain flow fields by small weights and
results in a decrease in the TP rate. However, the decreasing rate of the FP is much larger than that of the TP.

5 CONCLUSION

In this paper, we proposed a method to improve the accuracy of video object detection and reduce the FP rate by
considering the uncertainty of optical flow. We modified the FlowNet architecture to learn variances through Gaussian
modeling of flow fields. Compared to the baseline method, the proposed method increased the mAP by 1.27 and reduced
the FP rate by 10.59%. These results demonstrate that suppressing unreliable flow field using the uncertainty weight
increases the performance and reduces the false detection considerably.
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