This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3079939, IEEE Access

IEEE Access

Multidisciplinary * Rapid Review * Open Access Joumal

Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000.

Digital Object Identifier 10.1109/ACCESS.2017.DOI

Iterative Pseudo-Soft-Reliability-based
Majority-Logic Decoding for NAND Flash

Memory

KYEONG BIN PARK', (Student Member, IEEE,) and KI-SEOK CHUNG, (Member, IEEE)

Department of Electronic and Computer Engineering, Hanyang University, 04763 Seoul, Korea (e-mail: lay1523@navencnml)

Corresponding author: Ki-Seok Chung (e-mail: kchung @hanyang.ac.kr).

This work was supported by the National Research Foundation of Korea(NRF) grant funded by the Korea government(MSIT) (No.

2020R1A4A4079177).

ABSTRACT This paper proposes a decoding algorithm for nonbinary low-density parity-check (NB-
LDPC) codes, aiming to improve the error rate performance for NAND flash memory. Several NB-LDPC
decoding methods for NAND flash memory have been studied. Some approaches rely on hard decisions,
and these are relatively simple but do not have a good error rate performance. Others are based on soft
decisions that require multiple reads for each flash memory cell, leading to significant memory throughput
degradation. To improve the error rate performance without suffering performance degradation owing to
multiple reads, an iterative pseudo-soft-reliability-based decoding algorithm is proposed. Using Galois
field addition to calculate the Hamming distance at the initialization, the proposed algorithm not only
improves the error rate performance but also reduces the average number of iterations compared with those
of conventional hard-decision-based decoding algorithms.

INDEX TERMS Error correction codes, Hamming distance, Hard decision, Iterative hard-reliability-based

majority-logic decoding algorithm, NAND flash memory, Nonbinary low-density parity-check codes

. INTRODUCTION

ON-BINARY low-density parity-check (NB-LDPC)
N codes over GF(q) (¢ > 2) are known to have a better
error rate performance than binary LDPC codes when the
code length is moderate and the code rate is high [1]-[3].
Despite their remarkable error rate performance, the decod-
ing complexity of NB-LDPC codes is unacceptably high. For
instance, a well-known NB-LDPC decoding method called
g-ary sum-product algorithm (QSPA) has a decoding com-
plexity of O(g?) for a single check node (CN) update. To
reduce this high decoding complexity, numerous decoding
algorithms have been proposed. In particular, for NAND
flash memory, high data throughput is crucial. Therefore,
quite a few schemes have focused on reducing the decoding
complexity of the NB-LDPC codes for NAND flash memory
[4]-[10]. Moreover, the reliability of flash memory cells
continues to degrade owing to the rapid increase in storage
density via multi-level data cells. Therefore, a reduction in
the decoding complexity should not aggravate the error rate
performance.

The information stored in a flash memory cell is deter-

VOLUME 4, 2016

mined by the amount of electron charge trapped in the cell.
In the case of a single-level cell, a single read is required to
determine the logic value, O or 1, which is called hard de-
cision. Obviously, it is impossible to determine whether this
hard decision is true or whether the information is corrupted.
To overcome the drawback of the hard decision and obtain
probabilistic information on whether the corresponding bit
is 0 or 1, which is called soft reliability, previous studies
have proposed the use of multiple read with multiple levels
of read threshold voltages [11]-[13]. However, this multiple-
read operation causes significant throughput degradation.
Meanwhile, the authors in [6]-[8] proposed the application
of NB-LDPC codes for MLC NAND flash memory, and
the soft-reliability-based QSPA was employed for decod-
ing. The QSPA, however, suffered a significant throughput
degradation owing to high decoding complexity. Therefore,
a decoding algorithm that has a good error rate performance
and does not suffer high decoding throughput degradation is
necessary for NAND flash memory. Further, the code rate of
the NAND flash memory is significantly higher than that of
wireless communication because the memory space allowed

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

IEEE Access

10.1109/ACCESS.2021.3079939, IEEE Access

Author et al.: Preparation of Papers for EEE TRANSACTIONS and JOURNALS

for the parity bits is relatively small. Therefore, the decoding
algorithm for NAND flash memory should have a practically
decent error rate performance, even at a high code rate.

In general, there are three types of algorithms for reducing
the decoding complexity of NB-LDPC codes: simplified be-
lief propagation decoding (SBPD) [14]—[17], symbol flipping
decoding (SFD) [4], [18]-[22], and majority-logic decoding
(MLgD) [23]-[26] algorithms. The SBPD algorithms out-
perform the other two types, but their computational com-
plexity is higher than that of the other two. In contrast, the
complexities of the SFD and MLgD algorithms are consid-
erably lower than that of the SBPD algorithms, and both
algorithms have a slightly inferior error rate performance
to the SBPD algorithms. The iterative hard-reliability-based
MLgD (IHRB-MLgD) algorithm [23] updates the reliability
based on hard decisions. Thus, the IHRB-MLgD algorithm
has a significantly lower computational complexity at the cost
of losing some error rate performance.

In this paper, we propose an iterative pseudo-soft-
reliability-based MLgD (IPSRB-MLgD) algorithm that uses
the Hamming distance. Several studies [24]-[26] have pro-
posed the use of soft reliability, but they are not suitable for
NAND flash memory because fine-grained soft reliability can
only be derived by multiple reads. In contrast, the [PSRB-
MLgD algorithm calculates the Hamming distances between
the hard-decision symbol and the other symbols and uses
them as the soft reliability of each symbol at the initialization.
Accordingly, the IPSRB-MLgD algorithm does not require
multiple reads and improves the error rate performance of
the hard-decision-based decoding algorithm. For brevity, the
term "MLgD" will be omitted when we mention the related
algorithms for the rest of the paper. To validate the effective-
ness of the proposed algorithm, in this study, we evaluated
the error rate performance in two different types of channels:
an additive white Gaussian noise (AWGN) channel modeled
as a general communication channel and a binary symmetric
channel (BSC) modeled as a NAND flash memory channel
[27]-[30]. In addition, we compared only the hard-decision-
based decoding algorithms with a high code rate (0.89) to
preserve the system throughput and minimize the parity bit
length. Compared with the IHRB algorithm, the proposed IP-
SRB algorithm has a better bit error rate (BER) performance
by nearly 1 dB at a BER of 10~ with a decreased average
number of iterations.

Il. PRELIMINARIES

The NB-LDPC code C is defined by an ultra sparse parity-
check matrix H or a graphical representation of the matrix
called the Tanner graph [31], [32]. Fig. 1 shows the parity-
check matrix and its Tanner graph representation. Nonzero
elements in H belong to Galois field GF(q), where ¢ = 27
for some positive integer p, and the elements construct the
interconnections between CNs and variable nodes (VNs) in
the Tanner graph. In the Tanner graph representation, there
are N VNs (columns in H) and M CNs (rows in H). The
degree of a node in a Tanner graph, which is the number

2

. VN
Parity-check matrix H

0 a, 0 a,

Oa,a30
a200a‘

Non-zero element
CN

FIGURE 1. Tanner-graph representation of parity-check matrix H with GF(4).

of its adjacent nodes, corresponds to the number of nonzero
elements in a column or a row in H, and we will call it the
weight in the matrix. This study considers only regular NB-
LDPC codes, the H of which has a constant column weight
d, and a constant row weight d.. For NB-LDPC code with
a length of N, let ¢ = [cp,¢1,...,cn—1] be a codeword of
C. Let x = [370,331, ...,.Z'N_l] and y = [yo,y]_, ~-~7yN—l]
are channel input vector and received vector, respectively.
Thus, the vector y is noisy vector of x. Based on the y, let
zF) = [zék), zgk) z](\]f) 1] be the hard-decision vector of
the received symbols in the k*" decoding iteration. Accord-
ingly, z(9) consists of the hard-decision symbols from the
channel output and is the input of the decoder. The goal of
the decoding iteration is to make z*) satisfies the syndrome
check equation z*) x HT = 0, which means that z(*) is
codeword.

Given the initial hard-decision vector Z(O), the authors in
[19] proposed two iterative hard-decision algorithms called
generalized Gallager’s Algorithm B (AlgB) and weighted
Gallager’s Algorithm B (wtd- AlgB) At the k'" iteration in
the AlgB, hard-decision symbol z; k) g passed from the j**
VN to its neighboring CNs. The extrmsw information sum
(EXI) passed from the i** CN to the j** VN is denoted as

o™ and a(k) is derived as

1J ’]
o =n 1 N 2Phiy 1)
wEN;\J

In (1), N; is the set of VNs that are connected to the %"
CN, and N; \ j is the subset of N; without the j** VN (0 <
i < M,0 < j < N). Based on the derived of];), the VN
updates hard-decision vector z(¥) as follows:

argmaz n(o (13)), maz n(o 2(])) >T
()zelw i€EM; ’
iy

LEHD) ?)
(k) (k)
zi, mar n(o; ;) <

(k)

where n(o; (k)) denotes the number of occurrences of o 7,

and T is a predetermmed threshold value.

The wtd-AlgB is a modified version of the AlgB, and its
error rate performance is improved by employing the Ham-
ming distance. The VN update in the wtd-AlgB is modified
as

VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3079939, IEEE Access

Author et al.: Preparation of Papers for EEE TRANSACTIONS and JOURNALS

IEEE Access

argmazx I(az(k‘)), mazx I(U(k‘)) >T

J et \Jig) =
(k+1) ollj ieM; e
2 = 3)
(k) (k)
zi Z?gjc\zfjc I(0;7)<T

where d(a, b) denotes the Hamming distance between two
symbols a and b, and 84, 1) denotes the weighting factor that

corresponds to d(a, b). I(O’E?) is defined as 6
n(ag’kj)).

Recently, SFD algorithms that based on prediction
[21], [22] improves error rate performances but it is not
considered in this study because they are soft reliability
based algorithms. Meanwhile, the authors in [4] proposed
a method called the decision-symbol-reliability-based SFD
(DRB-SFD) algorithm, which aims to improve the error
rate performance for NAND flash memory. The DRB-SFD
algorithm uses the crossover probability derived from the
program/erase (P/E) cycle of flash memory, in addition to
the hard-decision outputs from memory cells [33], where the
crossover probability is the probability that a transmitted bit
is flipped under the BSC. The crossover probability, however,
does not increase monotonically with the P/E cycle count
[34]. Therefore, the DRB-SFD algorithm, which requires the
crossover probability in advance, is not practically applicable
to commercial products.

In contrast, the MLgD algorithms consider only the most
reliable symbol in the CN update. Thus, the MLgD algo-
rithms are computationally simpler than the SBPD algo-
rithms. In the MLgD algorithms, the reliability of a symbol
is decided by voting for a VN based on the messages from
adjacent CNs. There are two types of MLgD algorithms:
the iterative soft-reliability-based MLgD algorithm and the
IHRB-MLgD algorithm. The main difference between these
two types of algorithms is that they use the soft or hard relia-
bility from the channel as the initial reliability. The enhanced
IHRB (EIHRB) and improved EIHRB (IEIHRB) algorithms
in [25], [26] introduce soft reliability at the initialization and
have improved the error rate performance.

Among the previously proposed SFD and MLgD algo-
rithms, some used the Hamming distance to improve the
error rate performance. In the weighted bit-reliability-based
decoding algorithm [24], the Hamming distance between the
EXI and the hard-decision symbol is used as the reliability
of the EXI. In the SFD algorithm based on prediction [21],
a method that employed the Hamming distance and a plu-
rality logic as a flipping metric was proposed. In these two
algorithms, the error rate performance is improved by using
the Hamming distance as the reliability at the node-updating
step.

k k X
d(zj(.) o€))

LY}

lll. PROPOSED ALGORITHM
The THRB algorithm [23] is an iterative decoding algorithm
that starts with the given initial hard-decision vector z(0),

VOLUME 4, 2016

and the reliability of the received sglmbols is updated based
on the majority logic. R§k) = [Rf0 , R;fcl), - R;-fcq)fl] is the
reliability vector of the j*" received symbols. It indicates the
probabilities that the ;" received symbol is equal to each
Galois field element and defines a set {ag, a1, ..., ag—1} that
consists of all the elements of GF(q). At the initialization,
as described in Algorithm 1, the reliability of hard-decision
symbol R;?l) is set to v and the reliabilities of the other
symbols are set to zero, where « is a predetermined positive
integer. In other words, the IHRB algorithm creates a relia-
bility biased toward hard-decision symbols.

Algorithm 1: THRB algorithm
1: initialization
R;?l) =if Zj(o) = ay;
R;-?l) = 0 otherwise, 0 <[<q—1
/literative decoding
k=0:Ilna
2: syndrome check
Stop if z(¥) x HT =0

3: CN update
fori=0:m—1
forj € N; w
—1 k
glﬁj = h’z}j ZueNl\j Zu hi,u
if 05,5 = Qi
(k+1) _ p(k)
R, =R +1
4: VN update
forj=0:n—-1
z](-kH) = argmale;iﬂ)

One of the reasons why the error rate performance of
the soft-decision algorithm is higher than that of the hard-
decision algorithm is that the soft-decision algorithm consid-
ers the possibility of all the symbols from the initialization.
Therefore, if the reliability of other symbols, except for the
hard-decision symbols, is initialized to 0, as in the IHRB
algorithm, the error rate performance will be inevitably poor.
This weakness of the IHRB algorithm could be overcome
by employing soft reliability at the initialization, as in the
EIHRB and IEIHRB algorithms. However, the cells in the
NAND flash memory essentially derive only hard reliability
without multiple reads. To generate soft reliability without
conducting multiple reads in the flash memory, we propose
the use of the Hamming distance between the hard-decision
symbol and the other symbols. We call this reliability the
pseudo-soft reliability in this paper.

The NB-LDPC codes consist of symbols that are Galois
field elements. The Galois field elements can be represented
by binary numbers. Hence, the Hamming distances between
elements can be easily computed. Because the Hamming dis-
tance between two symbols indicates the correlation between
the two symbols, the greater the Hamming distance from
the hard-decision symbol, the lower the correlation of the
corresponding symbol and the hard-decision symbol. Based
on this observation, the proposed IPSRB algorithm initializes

3

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

IEEE Access

10.1109/ACCESS.2021.3079939, IEEE Access

Author et al.: Preparation of Papers for EEE TRANSACTIONS and JOURNALS

the reliability of not only the hard-decision symbol but also
the other symbols at the initialization.

The improved IHRB (ITHRB) algorithm [35] also uses
the Hamming distance at the initialization, but the ITHRB
algorithm considers only the symbols the Hamming distance
with the hard-decision symbol of which is 1. However, the
higher the code rate, the worse the error rate performance;
hence, the reliability of all symbols should be assigned at
initialization to improve the error rate performance. In the
NAND flash memory, especially, a high-rate code is used;
therefore, the IIHRB algorithm may not have a good error
rate performance. Furthermore, the larger the Galois field
size, the more the reliability information that will be ignored
in the IIHRB algorithm because the number of symbols, the
Hamming distance to an arbitrary symbol of which is not
1, increases rapidly. In addition, the IHRB and IIHRB algo-
rithms need to find the optimal ~ through a simulation, but
the proposed algorithm does not require such a process. The
proposed algorithm exhibits a better error rate performance
than the IIHRB algorithm presented in [35], and the details
will be reported in the experimental results.

Algorithm 2: IPSRB algorithm
1: lglitialization .
R§-,l) =d, X (p— d(z]()
[literative decoding
k=0: I
2: syndrome check
Stop if z(¥) x HT =0

), 0<1<¢g-—-1

3: CN update
fori=0:m-—1
forj € N; "
Oi,j = h‘zg ZuGN \Jj Zu hl u
if 05,5 == Qi
(k+1) _ (k)
R, ;"7 =R +1
4: VN update
forj=0:n—-1
LD argmale(+1)

J

Algorithm 2 describes the proposed IPSRB algorithm in
detail. Unlike the IHRB algorithm described in Algorithm 1,
d,, x p denotes the highest reliability among all symbols at the
initialization of the IPSRB algorithm, where p is computed
as logoq. The reliability of all the other symbols is set to
dy X (p— d(zj(o), a;)), implying that the closer the Hamming
distance from the hard-decision symbol, the higher the reli-
ability of the symbol. The Hamming distance can be easily
derived by the binary XOR operation between symbols; the
addition of such a simple operation improves the error rate
performance of the IPSRB algorithm significantly.

Consequently, the difference between the IHRB and IP-
SRB algorithms is only the reliability vector at 1n1t1alization.
Fig. 2, for example, presents the difference in R) between
the IHRB (left) and IPSRB (right) algorithms when the ;"
hard-decision symbol z; ™ is ag. Based on the R i, l , if symbol

4

() (0)
4 -_

a, y dy(p - d(ay, ay))
" 0 a dp-da,ay)
o 0 a, dyp-diay ay)
D 0 a, dyp-d(ay ay)
a, 0 a, dyp - d(ay ay)
as 0 as dyp - d(ay, as)
o 0 a; dyp-da, ag)
o 0 a; dyp-day, ay)

FIGURE 2. Initialization difference between the IHRB and IPSRB algorithms
over GF(8).

0; j from the i*" CN, adjacent to the j'" VN, is equal to a1,
R§ 1) will be voted in the next iteration, which indicates that
R = R +1.

Here, it should be noted that d, is multiplied by (p —
d(z§) al)) in the proposed algorithm. In the VN update,
voting is performed d, times. If d, is not multiplied, the
difference in Rq) between each symbol will be small.
Therefore, if the votes are evenly distributed, three or more
symbols with the same number of votes may appear. For
example, assuming that a hard-decision symbol with GF(8)
at initialization in the j** VN is ag, R\ is set to [3, 2, 2, 1,
2,1, 1, 0]. In the next iteration, if d, = 4 and the neighboring
CNs vote for aq, as, as, and as, R; l) will be changed to
[3, 3,3, 1, 2, 3, 1, 0]. In the case of the aforementioned
example, it is troublesome to choose the z](+1) among the
four symbols. To prevent such a situation and give a bias
to the channel information, as in the IHRB algorithm, d,
is multiplied. Owing to the multiplication, only one symbol
with the same number of votes as zj(-k) will appear. Because
this means that the corresponding symbol is voted from all
CNs neighboring the j** VN, the corresponding symbol is

chosen as z§k+1) in the proposed algorithm.

IV. PERFORMANCE COMPARISONS
The BER performance and the computational complexity of
the proposed algorithm are compared with those of the hard-
decision algorithms: AlgB, wtd-AlgB, IHRB, and ITHRB
[19], [23], [35]. The QSPA is also implemented as a perfor-
mance limit in the BER performances.

A. BIT ERROR RATES

The parameters for the previous hard-decision algorithms,
which would maximize the BER performance, were deter-
mined through a brute-force search. Threshold T for the
AlgB and that for the wtd-AlgB were set to d, — 1 and
1, respectively. The 6, (=09 009) for the wtd-AlgB was set
to [1,0.75,0.5], thereby mdléétmg that 9 RO was 1,

0.75, and 0.25 if d(z; (k), Z(’j)) was 0, 1, and 2 respectively.

VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3079939, IEEE Access

Author et al.: Preparation of Papers for EEE TRANSACTIONS and JOURNALS

IEEE Access

AlgB
wtd-AlgB
IHRB
IIHRB

Proposed

~

Bit error rate

1 1 1 1 1]

1
109 8 7 6 5 4 3 2 1
(Crossover probability) € (x 103)
FIGURE 3. BERs under BSC for a (999, 888) code over GF(32), with d,, = 3
and d. = 27.

AlgB
wtd-AlgB
IHRB
IIHRB
Proposed [>

Bit error rate

3 1
(Crossover probability) € (x 109)

FIGURE 4. BERs under BSC for a (999, 888) code over GF(64), with d,, = 3
and d. = 27.

===- QSPA
—O— AlgB
—— wtd-AlgB
—A— IHRB o>
—{1- IIHRB
o —O— Proposed
® X
S
5
@
10.8 L 1 1 1 1 1 1 1 1 J
109 8 7 6 5 4 3 2 1
(Crossover probability) € (x 10%)

FIGURE 5. BERs under BSC for a (1908, 1696) code over GF(32), with
d, =4and d. = 36.

Otherwise, 94(2(’” o) was set to 0. The ~ values for the
THRB and ITHRB aiéorithms were set to 6. The reliability

VOLUME 4, 2016

information of the symbols, with a Hamming distance of 1
and with the hard-decision symbol, was set to 3 for the IHRB
algorithm [35]. The maximum number of iterations for all the
algorithms used in the experiments was fixed at 20.

The channel of the NAND flash memory is often mod-
eled as a channel with asymmetric noise because the error
rates for bit values "0" and "1" are observed differently. To
overcome the asymmetry of the error rates and reduce the
raw BERs, storage device manufacturers have proposed a
solution called voltage optimization [29]. Because of voltage
optimization, the NAND flash channel can be modeled as
the BSC, and many previous studies on the error correction
code for NAND flash storage adopted the BSC [27]-[30].
Therefore, to examine whether the proposed algorithm is
suitable for NAND flash memory, the channel was modeled
as a BSC, assuming voltage optimization. The error rate
performance in the AWGN channel with binary phase shift
keying modulation 1 — +1 and 0 — —1 were also
evaluated, where the AWGN channel is commonly modeled
for a telecommunication channel.

Because the proposed decoding algorithm mainly focuses
on error correction codes for NAND flash memory, the
parity-check matrices were chosen as they were considered to
be suitable for the NAND flash memory. The error correction
engine in the flash memory decodes stored data per read
operation, and the page is the unit of a read operation, where
the page size varies from 4K bits to 16K bits. We simulated
high-rate codes that had a length of more than 4K bits. The
simulated codes were chosen to measure the performances
based on different column weights, Galois field sizes, and
code lengths. Thus, for performance evaluation, the (999,
888) and (1908, 1696) NB-LDPC codes over GF(32) and the
(999, 888) NB-LDPC code over GF(64) were simulated.

We first evaluated the BER of the decoding algorithms
under the BSC. Under the BSC, the smaller the crossover
probability ¢, the better the channel reliability, and the more
the slope shifts to the left, the better the BER performance.
Accordingly, as shown in Fig.3, Fig.4, and Fig.5, the pro-
posed algorithm outperforms all the other hard-decision al-
gorithms in the simulated NB-LDPC codes. Further, the
smaller the crossover probability, the larger the difference.
At the crossover probability of 5 x 1073, only the proposed
algorithm achieved a BER that was lower than 107 in the
simulated NB-LDPC codes except QSPA. The BER perfor-
mances of the AlgB and wtd-AlgB are relatively worse than
those of the MLgD algorithms.

We also evaluated the BER of the decoding algorithms
under the AWGN, and the results are presented in Fig.6,
Fig.7, and Fig.8. Under the AWGN, similar to that under
the BSC, the proposed algorithm has the best BER perfor-
mance among all the hard-decision algorithms. At a BER
of 1072 for the (999, 888) codes over GF(32), the proposed
algorithm outperforms the IHRB and IITHRB algorithms by
approximately 0.8 dB and 0.4 dB, respectively. In addition,
the proposed algorithm outperforms the AlgB and wtd-AlgB
by more than 2 dB, at the BER of 10~5 with all the simulated

5

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3079939, IEEE Access

IEEE Access

Author et al.: Preparation of Papers for EEE TRANSACTIONS and JOURNALS

-==- QSPA
—O— AlgB
—%— wid-AlgB
—A— IHRB
—1- IHRB
—O— Proposed

\

Bit error rate
)
S

\
\
\
\
\
\
\
1
\
\
\
\
\
\
1
1
1
\
\
\
\

6 7
SNR (E,/N)

FIGURE 6. BERs under AWGN for a (999, 888) code over GF(32), with
d, = 3and d. = 27.

-=-=- QSPA
—O— AlgB
—%— wtd-AlgB
—A— IHRB
—1- IHRB
—O— Proposed

Bit error rate

6
SNR (E,/N)

FIGURE 7. BERs under AWGN for a (999, 888) code over GF(64), with
d, = 3and d. = 27.

-=-=- QSPA
—O— AlgB
—%— wtd-AlgB
—A— IHRB
—1- IHRB
—O— Proposed

Bit error rate

6 7
SNR (E,/N)

FIGURE 8. BERs under AWGN for a (1908, 1696) code over GF(32), with
d, =4andd. = 36.

codes. For the rest of the simulated codes, the proposed
algorithm achieves an improvement in the BER performance

6

of at least 0.2 dB.

B. COMPUTATIONAL COMPLEXITY

We compared the computational complexity in terms of
the number of operations. The comparison results for the
extended min-sum (EMS) algorithm [14], wtd-AlgB, ITHRB,
ITHRB, and IPSRB algorithms are summarized in Table 1.
As shown in Table 1, the EMS algorithm, a soft-reliability-
based algorithm, needs much more operations than the other
algorithms. The proposed algorithm and the [IHRB algorithm
perform the same number of operations as the IHRB algo-
rithm at the node-updating stage, but additional operations
are required at the initialization to calculate the Hamming
distance. The proposed algorithm requires N (¢ — 1) bit-wise
XOR operations and N (g — 1) integer multiplications (IMs)

at the initialization, whereas the IIHRB algorithm requires

N(g — 1) bit-wise XOR operations and N (g — 1) integer

comparisons (ICs). It should be noted that the bit-wise XOR

operation and the Galois field addition (GA) are identical

operations.

Fig.9, Fig.10, and Fig.11 present the average number of
iterations for the simulated algorithms. The AlgB and wtd-
AlgB were excluded because of unstable error rate perfor-
mances. The proposed algorithm achieved the lowest average
number of iterations among the three algorithms under the
same BER for all the simulated codes. The [IHRB algorithm,
however, had the highest average number of iterations

20
—A— IHRB
-}~ IHRB
15 —O— Proposed
12}
c
kel
s
2
S 10
[}
Qo
S
=}
c
®
o
© 5
1]
>
<
L 1 1 1 1 1 1
10 102 103 104 10 10

Bit error rate

FIGURE 9. Average number of iterations versus BER for a (999, 888) code
over GF(32).

Given the number of operations in Table 1 and the average
number of iterations, the computational complexities of the
simulated algorithms at the BER of 10> are summarized
in Table 2. In the proposed algorithm, the number of GA
and Galois multiplication operations is approximately three
times higher than that in the IHRB algorithm, but the GA is
significantly simpler than integer and real number additions;
moreover, the proposed algorithm requires a lower average
number of iterations than the IHRB algorithm. Therefore,
the throughput of the two algorithms was nearly the same.

VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3079939, IEEE Access

Author et al.: Preparation of Papers for EEE TRANSACTIONS and JOURNALS

IEEE Access

TABLE 1. Number of operations per iteration of various hard-decision-based decoding algorithms with the (N, M) NB-LDPC code over GF(q = 2F)

[Decoding algorithm [GA [GM] TA/RA [IM/RM [IC/RC |
EMS [14] O, (6 — 2M) 287m | 1m (200 — 18M — 12N) - N l0gamm (96 — 12M — 4N)
wtd-AlgB [19] 30 — M 26 0 0 o
TORB [23] 25— M 25 5+ Ng 2Nq— 2N .
TTHRB [35] (26— M) + N(q—1) 26 5+ Ngq 2Nq— 2N N{g—1)
IPSRB (20 — M) + N(g— 1) 26 5+ Ng 2Nq— 2N + N(g—1) -
GA: Galois field addition =~ GM: Galois field multiplication
IA/IM/IC: Integer addition/multiplication/comparison ~ RA/RM/RC: Real addition/multiplication/comparison
N, message truncation size [14] § = N X d,, (number of edges in the Tanner graph)
TABLE 2. Computation complexity of various hard-decision-based decoding
20 algorithms at the BER of 107 for the (1908, 1696) code over GF(32)
—&— IHRB
-0~ IHRB [Algorithm][Avg.iter [GA/GM [TA/RA [IM/RM [IC/RC |
.15 —O— Proposad THRB [23] 5.1 28832 [68688 [118296 -
5 ITHRB [35] 5.2 87980 68688 118296 | 59148
i IPSRB 34 87980 68688 177444 -
f_:’ Avg.iter: Average number of iterations
5 10
2
E the reliability information of symbols at the initialization,
g 5 the proposed algorithm outperforms previous hard-decision
[. .
z based algorithms for various NB-LDPC codes under both
the BSC for NAND flash memory and the AWGN channel
oL L L . L .] for communication. We also demonstrated that the proposed
10t 102 10° 104 10 106

Bit error rate

FIGURE 10. Average number of iterations versus BER for a (999, 888) code
over GF(64).

20

—A— |HRB
-1~ IHRB
15 —O— Proposed

Average number of iterations

0
10 102 10 10+

Bit error rate

10 10

FIGURE 11. Average number of iterations versus BER for a (1908, 1696)
code over GF(32).

Furthermore, the IM operations at initialization could be
replaced by a look-up table. In this case, the memory space
required to store the table is ¢ x 64 bits based on 64-bit
integer-type data.

V. CONCLUSION

In this paper, we presented a novel hard-decision-based de-
coding algorithm using the Hamming distance for NAND
flash memory. By introducing the Hamming distance as

VOLUME 4, 2016

algorithm achieved the lowest average number of iterations
among all the IHRB-MLgD-based algorithms. Compared
with the IHRB-MLgD algorithm, the proposed algorithm
requires more GA and IM operations at initialization, but it
is offset by the smaller average number of iterations. In the
future, based on this study, we will investigate a decoding
algorithm for NAND flash memory that can decode a channel
assuming asymmetric noise without voltage optimization.

REFERENCES

[1] Y.Kou, S. Lin, and M. P. Fossorier, “Low-density parity-check codes based
on finite geometries: a rediscovery and new results,” IEEE Transactions on
Information theory, vol. 47, no. 7, pp. 2711-2736, 2001.

C. Poulliat, M. Fossorier, and D. Declercq, “Design of regular (2, d/sub
c/)-1dpc codes over gf (q) using their binary images,” IEEE Transactions
on Communications, vol. 56, no. 10, pp. 1626-1635, 2008.

B. Zhou, J. Kang, S. Song, S. Lin, K. Abdel-Ghaffar, and M. Xu,
“Construction of non-binary quasi-cyclic Idpc codes by arrays and array
dispersions-[transactions papers],” IEEE Transactions on Communica-
tions, vol. 57, no. 6, pp. 1652-1662, 2009.

J. Oh, S. Han, and J. Ha, “An improved symbol-flipping algorithm for
nonbinary ldpc codes and its application to nand flash memory,” IEEE
Transactions on Magnetics, vol. 55, no. 9, pp. 1-13, 2019.

Y. Toriyama and D. Markovic, “A 2.267 gbps, 93.7pj/b non-binary ldpc
decoder for storage applications,” in 2017 Symposium on VLSI Circuits,
pp. C334-C335, 2017.

L. Qiao, H. Wu, D. Wei, and S. Wang, “A joint decoding strategy of non-
binary ldpc codes based on retention error characteristics for mlc nand
flash memories,” in 2016 Sixth International Conference on Instrumenta-
tion & Measurement, Computer, Communication and Control (IMCCC),
pp. 183-188, IEEE, 2016.

Y. Maeda and H. Kaneko, “Error control coding for multilevel cell flash
memories using nonbinary low-density parity-check codes,” in 2009 24th
IEEE International Symposium on Defect and Fault Tolerance in VLSI
Systems, pp. 367-375, IEEE, 2009.

C. A. Aslam, Y. L. Guan, and K. Cai, “Non-binary ldpc code with multiple
memory reads for multi-level-cell (mlc) flash,” in Signal and Information
Processing Association Annual Summit and Conference (APSIPA), 2014
Asia-Pacific, pp. 1-9, IEEE, 2014.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

IEEE Access

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3079939, IEEE Access

Author et al.: Preparation of Papers for EEE TRANSACTIONS and JOURNALS

[91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

A. Hareedy, C. Lanka, and L. Dolecek, “A general non-binary ldpc code
optimization framework suitable for dense flash memory and magnetic
storage,” IEEE Journal on Selected Areas in Communications, vol. 34,
no. 9, pp. 2402-2415, 2016.

K. Vakilinia, D. Divsalar, and R. D. Wesel, “Optimized degree distribu-
tions for binary and non-binary Idpc codes in flash memory,” in 2014
International Symposium on Information Theory and its Applications,
pp. 6-10, IEEE, 2014.

J. Wang, K. Vakilinia, T.-Y. Chen, T. Courtade, G. Dong, T. Zhang,
H. Shankar, and R. Wesel, “Enhanced precision through multiple reads
for Idpc decoding in flash memories,” IEEE Journal on Selected Areas in
Communications, vol. 32, no. 5, pp. 880-891, 2014.

L. Dolecek, “Making error correcting codes work for flash memory,” Flash
Memory Summit, vol. 3, no. 3.1, pp. 3-3, 2014.

K. Zhao, W. Zhao, H. Sun, X. Zhang, N. Zheng, and T. Zhang, “Ldpc-
in-ssd: Making advanced error correction codes work effectively in solid
state drives,” in Presented as part of the 11th {USENIX} Conference on
File and Storage Technologies ({FAST} 13), pp. 243-256, 2013.

D. Declercq and M. Fossorier, “Decoding algorithms for nonbinary ldpc
codes over gf (q),” IEEE transactions on communications, vol. 55, no. 4,
pp. 633-643, 2007.

A. Voicila, D. Declercq, F. Verdier, M. Fossorier, and P. Urard, “Low-
complexity decoding for non-binary ldpc codes in high order fields,” IEEE
transactions on communications, vol. 58, no. 5, pp. 1365-1375, 2010.

V. Savin, “Min-max decoding for non binary ldpc codes,” in 2008 IEEE
International Symposium on Information Theory, pp. 960-964, IEEE,
2008.

E. Li, D. Declercq, and K. Gunnam, “Trellis-based extended min-sum
algorithm for non-binary ldpc codes and its hardware structure,” IEEE
Transactions on Communications, vol. 61, no. 7, pp. 2600-2611, 2013.

B. Liu, J. Gao, G. Dou, and W. Tao, “Weighted symbol-flipping decoding
for nonbinary ldpc codes,” in 2010 Second International Conference on
Networks Security, Wireless Communications and Trusted Computing,
vol. 1, pp. 223-226, IEEE, 2010.

K. Jagiello and W. E. Ryan, “Iterative plurality-logic and generalized
algorithm b decoding of g-ary ldpc codes,” in Proc. IEEE Inf. Theory App.
‘Workshop, pp. 1-7, 2011.

F. Garcia-Herrero, D. Declercq, and J. Valls, “Non-binary ldpc decoder
based on symbol flipping with multiple votes,” IEEE Communications
Letters, vol. 18, no. 5, pp. 749-752, 2014.

S. Wang, Q. Huang, and Z. Wang, “Symbol flipping decoding algorithms
based on prediction for non-binary ldpc codes,” IEEE Transactions on
Communications, vol. 65, no. 5, pp. 1913-1924, 2017.

'W. Ullah, L. Cheng, and F. Takawira, “Low complexity bit reliability and
predication based symbol value selection decoding algorithms for non-
binary ldpc codes,” IEEE Access, vol. 8, pp. 142691-142703, 2020.

C.-Y. Chen, Q. Huang, C.-c. Chao, and S. Lin, “Two low-complexity
reliability-based message-passing algorithms for decoding non-binary
Idpc codes,” IEEE Transactions on Communications, vol. 58, no. 11,
pp. 3140-3147, 2010.

Q. Huang, M. Zhang, Z. Wang, and L. Wang, “Bit-reliability based
low-complexity decoding algorithms for non-binary ldpc codes,” IEEE
Transactions on Communications, vol. 62, no. 12, pp. 4230-4240, 2014.
X. Zhang, F. Cai, and S. Lin, “Low-complexity reliability-based message-
passing decoder architectures for non-binary ldpc codes,” IEEE Transac-
tions on Very Large Scale Integration (VLSI) Systems, vol. 20, no. 11,
pp. 1938-1950, 2011.

C. Xiong and Z. Yan, “Improved iterative hard-and soft-reliability based
majority-logic decoding algorithms for non-binary low-density parity-
check codes,” IEEE Transactions on Signal Processing, vol. 62, no. 20,
pp. 5449-5457, 2014.

S.-g. Cho, D. Kim, J. Choi, and J. Ha, “Block-wise concatenated bch codes
for nand flash memories,” IEEE Transactions on Communications, vol. 62,
no. 4, pp. 1164-1177, 2014.

D. Kim and J. Ha, “Quasi-primitive block-wise concatenated bch codes
with collaborative decoding for nand flash memories,” IEEE Transactions
on Communications, vol. 63, no. 10, pp. 3482-3496, 2015.

Y. Cai, S. Ghose, E. F. Haratsch, Y. Luo, and O. Mutlu, “Error characteri-
zation, mitigation, and recovery in flash-memory-based solid-state drives,”
Proceedings of the IEEE, vol. 105, no. 9, pp. 1666-1704, 2017.

J. Wang, T. Courtade, H. Shankar, and R. D. Wesel, “Soft information
for 1dpc decoding in flash: Mutual-information optimized quantization,” in
2011 IEEE Global Telecommunications Conference-GLOBECOM 2011,
pp. 1-6, IEEE, 2011.

[31] R.Gallager, “Low-density parity-check codes,” IRE Transactions on infor-
mation theory, vol. §, no. 1, pp. 21-28, 1962.

[32] R. Tanner, “A recursive approach to low complexity codes,” IEEE Trans-
actions on information theory, vol. 27, no. 5, pp. 533-547, 1981.

[33] C. A. Aslam, Y. L. Guan, and K. Cai, “Read and write voltage signal opti-
mization for multi-level-cell (mlc) nand flash memory,” IEEE transactions
on communications, vol. 64, no. 4, pp. 1613-1623, 2016.

[34] J. Meza, Q. Wu, S. Kumar, and O. Mutlu, “A large-scale study of flash
memory errors in the field,” ACM SIGMETRICS Performance Evaluation
Review, vol. 10, pp. 2796314-2745848, 2015.

[35] S. Yeo and I.-C. Park, “Improved hard-reliability based majority-logic
decoding for non-binary ldpc codes,” IEEE Communications Letters,
vol. 21, no. 2, pp. 230-233, 2016.

KYEONGBIN PARK received his B.S. in Elec-
tronics & Communication Engineering from
Hanyang University, Seoul, Korea in 2014, and He
is currently working toward Ph.D. degree in Elec-
tronics and Computer Engineering from Hanyang
University, Seoul, Korea. His interest research in-
cludes algorithms and hardware implementation
of error correction codes.

KI-SEOK CHUNG received his B.S. in Com-
puter Engineering from Seoul National University,
Seoul, Korea in 1989, and Ph.D. in Computer
Science from University of Illinois at Urbana-
Champaign in 1998. He was a Senior R&D Engi-
neer at Synopsys, Inc. in Mountain View, CA from
1998 to 2000, and was a Staff Engineer at Intel
Corp. in Santa Clara, CA from 2000 to 2001. He
also worked as an Assistant Professor at Hongik
University, Seoul, Korea from 2001 to 2004. Since
2004, he has been a professor at Hanyang University, Seoul, Korea. His
research interests include low power embedded system design, multi-core
architecture, image processing, reconfigurable processor and DSP design,
SoC-platform based verification and system software for MPSoC.

VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

