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Abstract— DRAM technology scaling has continuously improved 

memory density, but the limited cell capacitance makes more 

susceptible to reliability issues. Hence, it has become inevitable to 

employ in-DRAM ECC. Also, the performance and power 

consumption overhead due to refresh operations have become a 

critical issue as the DRAM density increases. Therefore, it is very 

important to reduce the refresh overhead without sacrificing the 

reliability of DRAM. In this paper, we propose a retention-aware 

refresh scheme with in-DRAM ECC. The key idea of our 

proposed method is that the in-DRAM ECC can correct a single-

bit error, and this will effectively reduce the number of weak 

rows that have to be refreshed every 64ms. Also, a runtime 

profiler is proposed to keep up-to-date information of weak rows 

to solve the variable retention time problem. Our experiments 

with SPEC benchmarks show up to 6.8% performance 

improvement of performance, and up to 15.4% reduction of 

power consumption compared with the conventional refresh 

schemes.  
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I. INTRODUCTION  

      As the DRAM cell size becomes smaller and the memory 

capacity increases, the overheads due to refresh operations 

often lead to significant power consumption and performance 

degradation [3]. As defined by the JEDEC standard, DRAM 

cells must be refreshed every 64ms to ensure data integrity [1]. 

However, most cells may retain data for much longer than 

64ms (strong cells), while only a few weak cells require the 

64ms refresh interval. Therefore, many studies [3,4,5,6,7] 

have tried to minimize the refresh overhead by reducing the 

refresh frequency of the strong cells. This approach is 

typically called retention-aware refresh. However, as the 

DRAM technology scales down, issues such as growing 

number of weak cells and variable retention time (VRT) 

characteristics have emerged to limit the benefits of the 

retention-aware refresh [5, 6]. 

      On the other hand, the JEDEC DDR5 standard specifies 

the Error Check and Scrub (ECS) function by using in-DRAM 

error correction codes (IECC) because the reliability of a 

DRAM cell has gradually deteriorated as the cell capacity 

scales down [2]. Therefore, DDR5 will be equipped with on-

die error-correction codes to correct at least a single-bit error 

for each codeword. The ECS operation periodically reads 

DRAM data with IECC and corrects an error if it occurs. We 

claim that the proportion of the weak rows can be significantly 

reduced, and the VRT problem, which addresses a problem of 

randomly changing retention times of some cells at runtime, 

can be solved by smartly utilizing the ECS operation. 

     In this paper, we propose a novel retention-aware refresh 

scheme. The previously proposed refresh schemes without 

IECC defined a weak row as the row that would include at 

least one weak cell because a refresh operation is performed 

on one row at a time. Instead, our proposed retention-aware 

refresh with IECC defines a weak row as the row that contains 

two or more weak cells. Also, we suggest a runtime profiling 

method to solve the VRT problem by updating the weak row 

information with periodic ECS operations. Our experiments 

with the SPEC benchmarks show 6.8%/2.9% improvement of 

performance, and 15.4%/8.1% reduction of power 

consumption at 1.28e-05 weak cell probability compared with 

commonly used auto-refresh [1] and Elaborate refresh [7] 

schemes, respectively.  

 

 

II. BACKGROUND & MOTIVATION 

A. Error Check and Scrub with In-DRAM ECC 

Fig. 1 shows an architecture of a DRAM bank with a (72, 
64) In-DRAM ECC (IECC) module. When the memory 
controller issues a write command of a 64-bit data, the IECC 
module writes a 72-bit data by adding a generated 8-bit parity 
to the memory array. This data plus parity bit is called 
codeword. In case of a read operation, the IECC module reads 
a 72-bit data, and checks and corrects the error before sending 

Figure 1. DRAM bank with IECC module 



   

a 64-bit data to the memory controller [10]. There are two 
types of Hamming codes that are commonly used as IECC: a 
128-bit data with an 8-bit parity code (6.25% overhead) to deal 
with single error correction (SEC), and a 64-bit data with an 8-
bit parity code (12.5% overhead) to enable SEC with double 
error detection (SECDED). These two codes are popular 
because they can be implemented with low area and latency 
overheads in DRAM [4].  

The Error Check and Scrub (ECS) operation internally 
checks the occurrence of a single-bit error with IECC module 
after reading a memory array and writes back the corrected 
data if an error occurs. In a 32Gb DRAM chip, the ECS 
operation is periodically conducted with a 0.322ms interval to 
scrub the whole chip every 24 hours. During the ECS mode, 
the information such as the error count per row and the 
corresponding address is updated in real-time. Therefore, it is 
possible to solve the VRT problem, which is regarded as one of 
the most challenging issues to solve in the previous retention-
aware refresh schemes without IECC. 

B. Retention-Aware Refresh 

The major source of DRAM errors are retention errors 
because of randomly scattered weak cells, which have short 
retention times [4]. To avoid bit errors due to weak cells, the 
DRAM cells must be refreshed periodically. A widely used 
refresh scheme called auto-refresh refreshes all rows by issuing 
8192 refresh commands within 64ms (tRET). However, most 
rows do not require such a short refresh interval [3]. To 
mitigate the inefficiency of the conventional refresh scheme, 
many prior works have suggested multi-rate refresh methods to 
reduce the refresh overhead by exploiting the information on 
the weak row that requires a refresh interval less than 256ms. 
Unfortunately, these methods still conduct lots of refreshes 
when the weak cell probability is high because rows containing 
at least one weak cell are regarded as weak rows. Moreover, it 
is practically impossible to profile on weak rows with the VRT 
characteristic, at the manufacturing stage. Commonly, a weak 
row probability is calculated as follows: 

�����_��� 	 1 � �1 � �����_
����
�   (1) 

where N is the number of cells per row and Pweak_cell is the weak 
cell probability. The weak row probability depends on the 
refresh granularity.  

Table I. Weak row probability with 1KB page size and 8 chips 

 

C. Motivation 

     Term row group is defined as a group of rows that is 
refreshed by one refresh command, and it is determined by two 
factors, refresh granularity and the number of weak cells in 
each row group. The refresh granularity means how many rows 
are refreshed at a time. Table I summarizes the weak row 
probability with respect to various granularities and weak cell 
probabilities. The conventional rank-level refresh 
simultaneously refreshes the rows with the same address in 
each chip. Table I shows that 81.32% of the rows are regarded 
as weak rows when the weak cell probability is 2.56e-05. 
Another refresh scheme called Elaborate refresh [6] proposed 
a chip-level refresh method, which stores the weak row address 
in each chip and simultaneously refreshes weak rows in each 
chip. In this method, the weak row granularity is reduced to 1/8 
in a system with eight chips, and the weak row probability is 
18.92%, much smaller than 81.32%. However, it is still a high 
probability that will require frequent refresh operations. This 
frequent refresh is caused by the fact that only one weak cell in 
a row group will require a refresh. On the other hand, an IECC-
equipped DRAM system can correct a single bit error due to a 
weak cell. Therefore, unless two or more errors occur in each 
74-bit codeword, the system reliability can be maintained 
without having to carry out additional refreshes. We observe 
that the probability that a row contains two or more weak cells 
is 1.91%, significantly lower than 18.92%. Therefore, in this 
paper, we propose a scheme that reduces the number of weak 
rows by relaxing the criterion for weak rows from a single 
weak cell per row to two or more weak cells per row. Also, we 
propose a real-time weak row profiling method using the ECS 
operation to solve the VRT problem.  

Weak 

Cell 

Prob. 

Weak Row Probability 

Rank-level 

Refresh 

Chip-level 

Refresh 

Chip-level 

Refresh 

(≥2 errors) 

Chip-level 

Refresh 

(≥3 errors) 

3.2e-06 18.92% 2.59% 0.034% 0.00029% 

6.4e-06 34.26% 5.11% 0.13% 0.0023% 

1.28e-05 56.78% 9.95% 0.51% 0.018% 

2.56e-05 81.32% 18.92% 1.91% 0.13% 

Figure 2. The proposed method 

Figure 3. Module for updating Weak Row Address (WRA) 



   

0.6

Auto Refresh Elaborate Refresh Proposed Method

III. PROPOSED METHOD 

A. Overall operation 

     We propose a chip-level retention-aware refresh scheme for 
DRAM systems with in-DRAM ECC. Fig. 2 shows the overall 
flow of our proposed scheme: 1) Weak row address profiling 
and 2) Retention-aware refresh. The proposed scheme enables 
runtime profiling of weak row addresses with the ECS 
operation. An ECS operation is performed in each codeword, 
and a counter called Errors per Row Counter (EpRC) is 
incremented if an error is detected. If the EpRC value is more 
than one in one row after finishing the ECS operation, a 
module for weak row address profiling saves the weak row 
address to the designated area within a bank as shown in Fig. 3.  

    The proposed method refreshes strong rows every 256ms 
and refreshes weak rows whose address information is saved in 
each bank every 64ms. Compared to other existing retention-
aware refresh schemes, the number of weak rows is 
significantly reduced because the proposed method redefines a 
weak row as the row containing two or more weak cells 
because IECC can correct a single-bit error while reading the 
codeword. Meanwhile, the VRT problem may cause even a 
strong row to contain two or more errors. Our proposed method 
solves the VRT problem by profiling the entire set of rows 
once every 24 hours to keep an up-to-date information on 
strong rows and weak ones. 

 

B. Implementation 

Fig. 4 shows the implementation of the address bus 
architecture. During the system initialization, the address 
information on weak rows is assumed to be obtained from the 
profiling during the manufacturing process and stored in a 
designated area within each DRAM bank. Storing the weak 

row address in each bank makes it possible for the DRAM 
device to refresh weak rows in each bank in parallel. Each 
Weak Row Address Register (WRAR) can store up to eight 
weak row addresses (WRA) that are copied from the 
designated area within each bank. When a strong row group is 
refreshed, the corresponding row address is provided via the 
global bus line. On the other hand, when a weak row group is 
refreshed, the address is provided by WRAR. A module for 
updating WRA is used to transfer the ECS operation results 
and update the WRA information correspondingly.    

   Fig. 3 shows the operation of the module for updating WRA 
for the proposed runtime profiling. (72,64) SECDED Hamming 
codes are used as IECC in our proposed method. During an 
ECS operation, the IECC module reads a codeword (a 64-bit 
data with an 8-bit parity code) whose address is provided by a 
block called ECS Address Counter (EAC) and writes the 
corrected data back if a single-bit error is detected. The IECC 
module increments Errors per Row Counter (EpRC) to count 
the number of the corrected errors. EAC resets EpRC when 
finishing the ECS operation for each row. If a new weak row is 
found, the module for updating WRA in Fig. 3 stores the 
corresponding address in a register called Mode Register (MR) 
and writes the new WRA to the designated area of the DRAM 
bank. This operation must be completed before the end of the 
next row’s ECS operation because the MR can store only one 
address. The overhead of writing a new WRA to the DRAM is 
negligible because the VRT problem does not occur frequently. 
The weak rows in the updated WRA will be refreshed every 
64ms.   

IV. EXPERIMENTAL ENVIRONMENT AND EVAULTION  

A DRAM simulator called DRAMSim2 [8] and an 
instruction set simulator called Gem5 [9] were integrated with 
some additions to implement the proposed method. Table II 
shows the set of simulation parameters of a DRAM device and 
a multi-core processor that have been used for performance 
evaluation. We simulated an out-of-order 8-core processor by 
running the Alpha benchmark binaries selected from the SPEC 
CPU 2006 benchmark suite. The weighted sum metric, which 
is sum of the ratios of the benchmark execution time, is used to 
evaluate the performance of our proposed method. We 
compared our proposed method with the conventional auto-
refresh and Elaborate refresh methods. As aforementioned, 
(72,64) SECDED Hamming codes were used in the IECC 
module.  

Figures 5 and 6 show the normalized weighted speed-up 
and energy per access when the weak cell probability is 1.28e-
5. Each result is normalized to the JEDEC’s standard auto-
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Figure 5. Normalized weighted speed-up when the weak cell probability is 1.28e-5  

Figure 6. Normalized energy per access when the weak cell probability is 1.28e-5 

Figure 4. Address bus architecture 



   

refresh scheme, and the geometric mean is used to compare 
results. Our proposed method showed 6.8%/2.9% of 
performance improvement, and 15.4%/8.1% of energy 
reduction per access over the auto-refresh and Elaborate refresh 
schemes, respectively. 

Table II. Simulation parameters 

Processor 
8 cores, 2GHz, 8-wide issue, 8 MSHRs/core, out-of-order 

192-entry instruction window 

Last-Level 

Cache 

4MB shared, 64B cache line, 8-way associative 

DRAM 

Controller 
FR-FCFS, 64-entry request queue 

DRAM 
32Gb Device, x8 DDR4-3200, 1 channel, 1 rank, 8 bank 
groups/rank, 4 banks/bank group 128K rows/bank, 1KB 

page size 

IECC (72, 64) SECDED Hamming code 

Weak Cell 

Probability 
1.28e-5, 2.56e-5 

 

 
Figure 7. Normalized geometric mean of performance when the weak cell 
probability is 1.28e-5 and 2.56e-5 

  

 
Figure 8. Normalized geometric mean of energy per access when the weak 

cell probability is 1.28e-5 and 2.56e-5  

 

Figures 7 and 8 show the comparison results of 
performance and energy per access when the weak cell 
probability is 1.28e-5 and 2.56e-5, respectively. At a higher 
weak cell probability, the differences on both the performance 
and the energy consumption between the auto-refresh scheme 
and the Elaborate refresh scheme are negligibly small. 
However, our proposed method showed 4.4% of performance 
improvement and 14.9% of energy reduction per access. 
Therefore, we can conclude that the proposed method is very 
effective to reduce the refresh overhead to improve the 
performance and the energy efficiency without sacrificing the 
reliability of DRAM systems.  

 

V. CONCLUSION 

     In this paper, we propose a retention-aware refresh scheme 

for a DRAM system with in-DRAM ECC. Our proposed 

method can effectively reduce the number of weak rows by 

utilizing the in-DRAM ECC module. Also, a runtime profiler 

to dynamically update the weak row information is proposed. 

Thereby, the DRAM refresh overhead was significantly 

reduced and the VRT problem was effectively solved. Our 

experimental results show that the proposed method have 

6.8%/2.9% of performance improvement and 15.4%/8.1% of 

energy reduction at 1.28e-05 as the weak cell probability 

compared with the conventional Auto-refresh and Elaborate 

refresh schemes, respectively. We expect that our proposed 

method will be more valuable when the weak cell probability 

is getting higher in the future. 
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