

Reducing Refresh Overhead with In-DRAM Error

Correction Codes
Hanbyeol Kwon

Dept. of Nanoscale

Semiconductor Engineering

Hanyang University

Seoul, Republic of Korea

gksquf808@hanyang.ac.kr

Kwangrae Kim

Dept. of Electronic

Engineering

Hanyang University

Seoul, Republic of Korea

kksilver91@hanyang.ac.kr

Dongsuk Jeon

Graduate School of

Convergence Science and

Technology

Seoul National University

Seoul, Republic of Korea

djeon1@snu.ac.kr

Ki-Seok Chung

Dept. of Electronic

Engineering

Hanyang University

Seoul, Republic of Korea

kchung@hanyang.ac.kr

Abstract— DRAM technology scaling has continuously improved

memory density, but the limited cell capacitance makes more

susceptible to reliability issues. Hence, it has become inevitable to

employ in-DRAM ECC. Also, the performance and power

consumption overhead due to refresh operations have become a

critical issue as the DRAM density increases. Therefore, it is very

important to reduce the refresh overhead without sacrificing the

reliability of DRAM. In this paper, we propose a retention-aware

refresh scheme with in-DRAM ECC. The key idea of our

proposed method is that the in-DRAM ECC can correct a single-

bit error, and this will effectively reduce the number of weak

rows that have to be refreshed every 64ms. Also, a runtime

profiler is proposed to keep up-to-date information of weak rows

to solve the variable retention time problem. Our experiments

with SPEC benchmarks show up to 6.8% performance

improvement of performance, and up to 15.4% reduction of

power consumption compared with the conventional refresh

schemes.

Keywords; Retention-Aware Refresh; In-DRAM ECC

I. INTRODUCTION

 As the DRAM cell size becomes smaller and the memory

capacity increases, the overheads due to refresh operations

often lead to significant power consumption and performance

degradation [3]. As defined by the JEDEC standard, DRAM

cells must be refreshed every 64ms to ensure data integrity [1].

However, most cells may retain data for much longer than

64ms (strong cells), while only a few weak cells require the

64ms refresh interval. Therefore, many studies [3,4,5,6,7]

have tried to minimize the refresh overhead by reducing the

refresh frequency of the strong cells. This approach is

typically called retention-aware refresh. However, as the

DRAM technology scales down, issues such as growing

number of weak cells and variable retention time (VRT)

characteristics have emerged to limit the benefits of the

retention-aware refresh [5, 6].

 On the other hand, the JEDEC DDR5 standard specifies

the Error Check and Scrub (ECS) function by using in-DRAM

error correction codes (IECC) because the reliability of a

DRAM cell has gradually deteriorated as the cell capacity

scales down [2]. Therefore, DDR5 will be equipped with on-

die error-correction codes to correct at least a single-bit error

for each codeword. The ECS operation periodically reads

DRAM data with IECC and corrects an error if it occurs. We

claim that the proportion of the weak rows can be significantly

reduced, and the VRT problem, which addresses a problem of

randomly changing retention times of some cells at runtime,

can be solved by smartly utilizing the ECS operation.

 In this paper, we propose a novel retention-aware refresh

scheme. The previously proposed refresh schemes without

IECC defined a weak row as the row that would include at

least one weak cell because a refresh operation is performed

on one row at a time. Instead, our proposed retention-aware

refresh with IECC defines a weak row as the row that contains

two or more weak cells. Also, we suggest a runtime profiling

method to solve the VRT problem by updating the weak row

information with periodic ECS operations. Our experiments

with the SPEC benchmarks show 6.8%/2.9% improvement of

performance, and 15.4%/8.1% reduction of power

consumption at 1.28e-05 weak cell probability compared with

commonly used auto-refresh [1] and Elaborate refresh [7]

schemes, respectively.

II. BACKGROUND & MOTIVATION

A. Error Check and Scrub with In-DRAM ECC

Fig. 1 shows an architecture of a DRAM bank with a (72,
64) In-DRAM ECC (IECC) module. When the memory
controller issues a write command of a 64-bit data, the IECC
module writes a 72-bit data by adding a generated 8-bit parity
to the memory array. This data plus parity bit is called
codeword. In case of a read operation, the IECC module reads
a 72-bit data, and checks and corrects the error before sending

Figure 1. DRAM bank with IECC module

a 64-bit data to the memory controller [10]. There are two
types of Hamming codes that are commonly used as IECC: a
128-bit data with an 8-bit parity code (6.25% overhead) to deal
with single error correction (SEC), and a 64-bit data with an 8-
bit parity code (12.5% overhead) to enable SEC with double
error detection (SECDED). These two codes are popular
because they can be implemented with low area and latency
overheads in DRAM [4].

The Error Check and Scrub (ECS) operation internally
checks the occurrence of a single-bit error with IECC module
after reading a memory array and writes back the corrected
data if an error occurs. In a 32Gb DRAM chip, the ECS
operation is periodically conducted with a 0.322ms interval to
scrub the whole chip every 24 hours. During the ECS mode,
the information such as the error count per row and the
corresponding address is updated in real-time. Therefore, it is
possible to solve the VRT problem, which is regarded as one of
the most challenging issues to solve in the previous retention-
aware refresh schemes without IECC.

B. Retention-Aware Refresh

The major source of DRAM errors are retention errors
because of randomly scattered weak cells, which have short
retention times [4]. To avoid bit errors due to weak cells, the
DRAM cells must be refreshed periodically. A widely used
refresh scheme called auto-refresh refreshes all rows by issuing
8192 refresh commands within 64ms (tRET). However, most
rows do not require such a short refresh interval [3]. To
mitigate the inefficiency of the conventional refresh scheme,
many prior works have suggested multi-rate refresh methods to
reduce the refresh overhead by exploiting the information on
the weak row that requires a refresh interval less than 256ms.
Unfortunately, these methods still conduct lots of refreshes
when the weak cell probability is high because rows containing
at least one weak cell are regarded as weak rows. Moreover, it
is practically impossible to profile on weak rows with the VRT
characteristic, at the manufacturing stage. Commonly, a weak
row probability is calculated as follows:

�����_��� 	 1 � �1 � �����_
����
� (1)

where N is the number of cells per row and Pweak_cell is the weak
cell probability. The weak row probability depends on the
refresh granularity.

Table I. Weak row probability with 1KB page size and 8 chips

C. Motivation

 Term row group is defined as a group of rows that is
refreshed by one refresh command, and it is determined by two
factors, refresh granularity and the number of weak cells in
each row group. The refresh granularity means how many rows
are refreshed at a time. Table I summarizes the weak row
probability with respect to various granularities and weak cell
probabilities. The conventional rank-level refresh
simultaneously refreshes the rows with the same address in
each chip. Table I shows that 81.32% of the rows are regarded
as weak rows when the weak cell probability is 2.56e-05.
Another refresh scheme called Elaborate refresh [6] proposed
a chip-level refresh method, which stores the weak row address
in each chip and simultaneously refreshes weak rows in each
chip. In this method, the weak row granularity is reduced to 1/8
in a system with eight chips, and the weak row probability is
18.92%, much smaller than 81.32%. However, it is still a high
probability that will require frequent refresh operations. This
frequent refresh is caused by the fact that only one weak cell in
a row group will require a refresh. On the other hand, an IECC-
equipped DRAM system can correct a single bit error due to a
weak cell. Therefore, unless two or more errors occur in each
74-bit codeword, the system reliability can be maintained
without having to carry out additional refreshes. We observe
that the probability that a row contains two or more weak cells
is 1.91%, significantly lower than 18.92%. Therefore, in this
paper, we propose a scheme that reduces the number of weak
rows by relaxing the criterion for weak rows from a single
weak cell per row to two or more weak cells per row. Also, we
propose a real-time weak row profiling method using the ECS
operation to solve the VRT problem.

Weak

Cell

Prob.

Weak Row Probability

Rank-level

Refresh

Chip-level

Refresh

Chip-level

Refresh

(≥2 errors)

Chip-level

Refresh

(≥3 errors)

3.2e-06 18.92% 2.59% 0.034% 0.00029%

6.4e-06 34.26% 5.11% 0.13% 0.0023%

1.28e-05 56.78% 9.95% 0.51% 0.018%

2.56e-05 81.32% 18.92% 1.91% 0.13%

Figure 2. The proposed method

Figure 3. Module for updating Weak Row Address (WRA)

0.6

Auto Refresh Elaborate Refresh Proposed Method

III. PROPOSED METHOD

A. Overall operation

 We propose a chip-level retention-aware refresh scheme for
DRAM systems with in-DRAM ECC. Fig. 2 shows the overall
flow of our proposed scheme: 1) Weak row address profiling
and 2) Retention-aware refresh. The proposed scheme enables
runtime profiling of weak row addresses with the ECS
operation. An ECS operation is performed in each codeword,
and a counter called Errors per Row Counter (EpRC) is
incremented if an error is detected. If the EpRC value is more
than one in one row after finishing the ECS operation, a
module for weak row address profiling saves the weak row
address to the designated area within a bank as shown in Fig. 3.

 The proposed method refreshes strong rows every 256ms
and refreshes weak rows whose address information is saved in
each bank every 64ms. Compared to other existing retention-
aware refresh schemes, the number of weak rows is
significantly reduced because the proposed method redefines a
weak row as the row containing two or more weak cells
because IECC can correct a single-bit error while reading the
codeword. Meanwhile, the VRT problem may cause even a
strong row to contain two or more errors. Our proposed method
solves the VRT problem by profiling the entire set of rows
once every 24 hours to keep an up-to-date information on
strong rows and weak ones.

B. Implementation

Fig. 4 shows the implementation of the address bus
architecture. During the system initialization, the address
information on weak rows is assumed to be obtained from the
profiling during the manufacturing process and stored in a
designated area within each DRAM bank. Storing the weak

row address in each bank makes it possible for the DRAM
device to refresh weak rows in each bank in parallel. Each
Weak Row Address Register (WRAR) can store up to eight
weak row addresses (WRA) that are copied from the
designated area within each bank. When a strong row group is
refreshed, the corresponding row address is provided via the
global bus line. On the other hand, when a weak row group is
refreshed, the address is provided by WRAR. A module for
updating WRA is used to transfer the ECS operation results
and update the WRA information correspondingly.

 Fig. 3 shows the operation of the module for updating WRA
for the proposed runtime profiling. (72,64) SECDED Hamming
codes are used as IECC in our proposed method. During an
ECS operation, the IECC module reads a codeword (a 64-bit
data with an 8-bit parity code) whose address is provided by a
block called ECS Address Counter (EAC) and writes the
corrected data back if a single-bit error is detected. The IECC
module increments Errors per Row Counter (EpRC) to count
the number of the corrected errors. EAC resets EpRC when
finishing the ECS operation for each row. If a new weak row is
found, the module for updating WRA in Fig. 3 stores the
corresponding address in a register called Mode Register (MR)
and writes the new WRA to the designated area of the DRAM
bank. This operation must be completed before the end of the
next row’s ECS operation because the MR can store only one
address. The overhead of writing a new WRA to the DRAM is
negligible because the VRT problem does not occur frequently.
The weak rows in the updated WRA will be refreshed every
64ms.

IV. EXPERIMENTAL ENVIRONMENT AND EVAULTION

A DRAM simulator called DRAMSim2 [8] and an
instruction set simulator called Gem5 [9] were integrated with
some additions to implement the proposed method. Table II
shows the set of simulation parameters of a DRAM device and
a multi-core processor that have been used for performance
evaluation. We simulated an out-of-order 8-core processor by
running the Alpha benchmark binaries selected from the SPEC
CPU 2006 benchmark suite. The weighted sum metric, which
is sum of the ratios of the benchmark execution time, is used to
evaluate the performance of our proposed method. We
compared our proposed method with the conventional auto-
refresh and Elaborate refresh methods. As aforementioned,
(72,64) SECDED Hamming codes were used in the IECC
module.

Figures 5 and 6 show the normalized weighted speed-up
and energy per access when the weak cell probability is 1.28e-
5. Each result is normalized to the JEDEC’s standard auto-

0.95

Auto Refresh Elaborate Refresh Proposed Method

Figure 5. Normalized weighted speed-up when the weak cell probability is 1.28e-5

Figure 6. Normalized energy per access when the weak cell probability is 1.28e-5

Figure 4. Address bus architecture

refresh scheme, and the geometric mean is used to compare
results. Our proposed method showed 6.8%/2.9% of
performance improvement, and 15.4%/8.1% of energy
reduction per access over the auto-refresh and Elaborate refresh
schemes, respectively.

Table II. Simulation parameters

Processor
8 cores, 2GHz, 8-wide issue, 8 MSHRs/core, out-of-order

192-entry instruction window

Last-Level

Cache

4MB shared, 64B cache line, 8-way associative

DRAM

Controller
FR-FCFS, 64-entry request queue

DRAM
32Gb Device, x8 DDR4-3200, 1 channel, 1 rank, 8 bank
groups/rank, 4 banks/bank group 128K rows/bank, 1KB

page size

IECC (72, 64) SECDED Hamming code

Weak Cell

Probability
1.28e-5, 2.56e-5

Figure 7. Normalized geometric mean of performance when the weak cell
probability is 1.28e-5 and 2.56e-5

Figure 8. Normalized geometric mean of energy per access when the weak

cell probability is 1.28e-5 and 2.56e-5

Figures 7 and 8 show the comparison results of
performance and energy per access when the weak cell
probability is 1.28e-5 and 2.56e-5, respectively. At a higher
weak cell probability, the differences on both the performance
and the energy consumption between the auto-refresh scheme
and the Elaborate refresh scheme are negligibly small.
However, our proposed method showed 4.4% of performance
improvement and 14.9% of energy reduction per access.
Therefore, we can conclude that the proposed method is very
effective to reduce the refresh overhead to improve the
performance and the energy efficiency without sacrificing the
reliability of DRAM systems.

V. CONCLUSION

 In this paper, we propose a retention-aware refresh scheme

for a DRAM system with in-DRAM ECC. Our proposed

method can effectively reduce the number of weak rows by

utilizing the in-DRAM ECC module. Also, a runtime profiler

to dynamically update the weak row information is proposed.

Thereby, the DRAM refresh overhead was significantly

reduced and the VRT problem was effectively solved. Our

experimental results show that the proposed method have

6.8%/2.9% of performance improvement and 15.4%/8.1% of

energy reduction at 1.28e-05 as the weak cell probability

compared with the conventional Auto-refresh and Elaborate

refresh schemes, respectively. We expect that our proposed

method will be more valuable when the weak cell probability

is getting higher in the future.

ACKNOWLEDGMENT

This work was supported by the National Research
Foundation of Korea (NRF) grant funded by the Korea
government (MSIT) (No. 2020R1A4A4079177).

This work was supported by Institute of Information &
communications Technology Planning & Evaluation (IITP)
grant funded by the Korea government (MSIT) (No. 2020-0-
00198, Development of in-building 28GHz OTA digital
repeater by using uplink noise cancellation)

REFERENCES

[1] JEDEC. “DDR4 SDRAM specification JESD79-4B.”2017.

[2] JEDEC. “DDR5 SDRAM specification JESD79-5.”2020

[3] Liu, Jamie, et al. "RAIDR: Retention-aware intelligent DRAM refresh."
ACM SIGARCH Computer Architecture News 40.3 (2012): 1-12.

[4] Cha, Sanguhn, et al. "Defect analysis and cost-effective resilience
architecture for future DRAM devices." 2017 IEEE International
Symposium on High Performance Computer Architecture (HPCA).
IEEE, 2017. I. S. Jacobs and C. P. Bean, “Fine particles, thin films and
exchange anisotropy,” in Magnetism, vol. III, G. T. Rado and H. Suhl,
Eds. New York: Academic, 1963, pp. 271–350.

[5] Choi, Haerang, et al. "Reducing DRAM refresh power consumption by
runtime profiling of retention time and dual-row activation."
Microprocessors and Microsystems 72 (2020): 102942.

[6] Qureshi, Moinuddin K., et al. "AVATAR: A variable-retention-time
(VRT) aware refresh for DRAM systems." 2015 45th Annual IEEE/IFIP
International Conference on Dependable Systems and Networks. IEEE,
2015.

[7] Seol, Hoseok, et al. "Elaborate refresh: a fine granularity retention
management for deep submicron DRAMs." IEEE Transactions on
Computers 67.10 (2018): 1403-1415. R. Nicole, “Title of paper with
only first word capitalized,” J. Name Stand. Abbrev., in press.

[8] Rosenfeld, Paul, Elliott Cooper-Balis, and Bruce Jacob. "DRAMSim2:
A cycle accurate memory system simulator." IEEE computer
architecture letters 10.1 (2011): 16-19. M. Young, The Technical
Writer's Handbook. Mill Valley, CA: University Science, 1989.

[9] Binkert, Nathan, et al. "The gem5 simulator." ACM SIGARCH
computer architecture news 39.2 (2011): 1-7.

[10] Jeong, Sangmok, SeungYup Kang, and Joon-Sung Yang. "PAIR: Pin-
aligned In-DRAM ECC architecture using expandability of Reed-
Solomon code." 2020 57th ACM/IEEE Design Automation Conference
(DAC). IEEE, 2020

0.8

1

1.2

1.28E-05 2.56E-05

Auto refresh Elaborate refresh Proposed method

0.5

1

1.28E-05 2.56E-05

Auto refresh Elaborate refresh Proposed method

