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ABSTRACT

Today, neural networks show remarkable performance in var-
ious computer vision tasks, but they are vulnerable to adver-
sarial attacks. By adversarial training, neural networks may
improve robustness against adversarial attacks. However, it
is a time-consuming and resource-intensive task. An earlier
study analyzed adversarial attacks on the image features and
proposed a robust dataset that would contain only features
robust to the adversarial attack. By training with the robust
dataset, neural networks can achieve a decent accuracy un-
der adversarial attacks without carrying out time-consuming
adversarial perturbation tasks. However, even if a network is
trained with the robust dataset, it may still be vulnerable to ad-
versarial attacks. In this paper, to overcome this limitation, we
propose a new method called Robustness-aware Filter Prun-
ing (RFP). To the best of our knowledge, it is the first attempt
to utilize a filter pruning method to enhance the robustness
against the adversarial attack. In the proposed method, the
filters that are involved with non-robust features are pruned.
With the proposed method, 52.1% accuracy against one of
the most powerful adversarial attacks is achieved, which is
3.8% better than the previous robust dataset training while
maintaining clean image test accuracy. Also, our method
achieves the best performance when compared with the other
filter pruning methods on robust dataset.

Index Terms— Deep Learning, Adversarial Attack, Ad-
versarial Training, Filter Pruning

1. INTRODUCTION

Recent advances in neural networks have achieved great suc-
cess in vision tasks such as image classification [1], image
detection [2]. Correspondingly, neural networks have been
adopted in various industries such as medical images [3], au-
tonomous driving [4], etc. However, it is well-known that it
is relatively easy to make neural networks malfunction. The
adversarial attack, one of these attempts, incurs misclassifi-
cation of a neural network by adding noise to the input im-

age. The noise-injected images called adversarial examples
can easily be classified by human eyes, but neural networks
classify them into entirely wrong classes. This malfunction of
a neural networks due to adversarial attacks may be fatal for
safety-critical tasks such as autonomous driving.

To counter the adversarial attack, Madry et al.[5] formu-
lated the adversarial training problem as Equation 1:

min
θ
E(x,y)∼D

[
max
δ∈S
L(θ, x+ δ, y)

]
(1)

where the model parameter θ minimizes the risk of neural net-
work loss, while δ maximizes the loss of neural network on
input data x and lable y. Moreover, they proposed an attack
called Projected Gradient Descent(PGD) as a solution for the
inner max problem. For the outer min problem, they utilized
Stochastic Gradient Descent(SGD) to minimize the loss of the
adversarial examples created with the PGD attack. Methods
proposed in [6, 7] utilized the gradient of a neural network to
make adversarial examples. In these methods, the perturba-
tion proceeds through several repetitions. Therefore, it takes
a considerable amount of time to make adversarial examples
and to train with them compared to the standard training.

In a recent study, Ilyas et al.[8] analyzed the adversar-
ial attack from the image perspective. They divided features
into robust features and non-robust ones. The robust features
are useful for classifying both a clean image and an adver-
sarial example. In contrast, the non-robust features are useful
only when classifying a clean image while misbehaving when
classifying an adversarial example. Based on this classifica-
tion, Ilyas et al.made a robust dataset which would contain
images with only the robust features. When training with the
robust dataset, it achieved better robustness to adversarial at-
tacks compared to the standard training, and training took less
amount of time compared to the adversarial training. How-
ever, the performance of this method is often inferior to the
adversarial training. In order to improve adversarial accuracy
while maintaining the advantage of fast training, we propose a
method called Robustness-aware Filter Pruning that removes
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Fig. 1. Overview of the proposed method. First, put adversarial examples into a neural network. Second, calculate the gradient
about the advesrarial examples. Third, with the calculated gradient, select non-robust filters and remove them.

filters that are involved with non-robust features (called as
non-robust filters in this paper).

Unlike the ordinary filter pruning methods that utilize the
norm of weights to characterize filters, we adopt the gradient
of a neural network to define the non-robust filters. We exper-
imentally confirm that the adversarial training should reduce
the influence of non-robust features by training the non-robust
filters with larger-scale gradients. Based on this result, we fig-
ure out the non-robust filters and remove them.

The overview of the proposed Robustness-aware Filter
Pruning is shown in Fig. 1. Our experimental results verify
that the proposed method achieves an improved adversarial
accuracy of up to 52.1%.

2. RELATED WORKS

2.1. Robust Dataset

Previously, the adversarial attack was considered as a linear-
ity problem of a neural network [6]. Correspondingly, the lin-
earity of a neural network was exploited to malfunction even
with the adversarial examples that were slightly over the de-
cision boundary. Ilyas et al.[8] tried to analyze adversarial at-
tacks from the feature perspective of an image. According to
the research, an image has both robust features that are robust
to the adversarial attacks and non-robust ones that are vul-
nerable to the attacks. The study claims that both robust and
non-robust features are useful when classifying a clean im-
age set. However, non-robust features hinder the neural net-
work from classifying an image correctly under adversarial
attacks. Based on this claim, they have made a robust dataset
that would contain only the robust features by removing non-
robust features from the original image. Specifically, the fol-
lowing optimization is applied to the original dataset to figure
out the robust dataset:
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Fig. 2. Accuracy of the standard training, the adversarial
training, and the training with a robust dataset. The adver-
sarial training was carried out as proposed in Madry et al.[5].
The experiment proceeded with VGG-16 as a network model
and CIFAR-10 as both the training and the test datasets. The
training with robust dataset achieved the adversarial accu-
racy of 45.12% while that of the standard training was only
12.38%.

min
xrobust

‖ g(xrobust)− g(xorigin) ‖2 (2)

where g is the mapping from an input to the representation
layer that is adversarially trained. Because non-robust fea-
tures have been removed in the robust dataset, neural net-
works trained with a robust dataset can endure the adversarial
attack, as seen in Fig. 2.

2.2. Robustness of Filter Pruning

In this paper, we claim that removing the non-robust filters
is an effective way to make a neural network robust against
adversarial attacks. Quite a few previous studies [9, 10] have
shown that pruning should make the neural network robust.
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Fig. 3. Comparison of removal filters from a sorted list in
descending order. Both methods proceeded with the VGG-16
model and CIFAR-10 for training, ROBUST CIFAR-10 for
fine-tuning. 60% of filters are pruned either from the top or
from the bottom.

However, the previous studies mainly dealt with weight prun-
ing that makes a set of weight values 0. On the other hand,
filter pruning removes some filters entirely from a convolu-
tional layer. It is hard to compare the effectiveness of the
filter pruning and that of the weight pruning directly because
the pruning detail is quite different, and weight pruning needs
some sparse libraries or specialized hardware [11]. However,
we want to claim that filter pruning is a very effective way to
enhance the robustness of a neural network. To the best of
our knowledge, this is the first attempt to verify that the filter
pruning is effective to make the network more robust against
adversarial attacks.

The existing filter pruning methods utilize the norm of
weights in filters. Li et al.[11] proposed a method called n-
Norm pruning where the filter with the smallest norm in each
layer is pruned. It is based on the observation that the smaller
norm of a filter implies that the filter is less important. They
used the l1 and l2 norms to prune filters. Similarly, He et
al.[12] proposed another pruning method called Filter Prun-
ing via Geometric Mean(FPGM) utilizing the norm. They
focused on the norms that deviate from the distribution. They
calculated the geometric mean of norms and pruned the filters
with norms far from the mean.

3. PROPOSED METHOD

In this paper, we propose a method called Robustness-aware
Filter Pruning (RFP) that makes the neural network robust
by removing the non-robust filters. The overview of RFP is
illustrated in Fig. 1.

In filter pruning methods, finding the right filter to prune
is the main problem to solve. In this paper, finding the right
filter to prune in order to enhance the adversarial accuracy
is the main problem. To solve this problem, we utilize the
gradients of filters while the other filter pruning methods use
norms calculated with weights of filters.

Algorithm 1: Algorithm RFP

Data: X,X ′, Xrobust

Result: The compact and robust model with
parameters W ∗

1 Initialize parameters W =W (i), 0 ≤ i ≤ L
2 for epoch = 1; epoch ≤ epochmax; epoch++ do
3 Update the model parameter W based on X

4

5 X ′ ← l2PGD(W,X ′)
6 G← ∇X′L(W,X ′)
7

8 for i = 0; i ≤ L; i++ do
9 Find NiP filters that satisfy Equation 3 with G

10 Remove selected filters

11

12 #Fine-tune
13 for epoch = 1; epoch ≤ epochfine−tune; epoch++ do
14 Update the model parameter W based on Xrobust

3.1. Gradient-based Robustness Test

As aforementioned, Ilyas et al.[8] utilized the features in the
representation layer of a convolutional neural network to con-
struct a robust dataset. To retain only the robust features, the
images in the original dataset were mapped to the features
in the representation layer of the adversarially trained neural
network. The neural network trained with these images was
robust against the adversarial attack. This indicates adver-
sarially trained network retains only the robust features in the
representation layer. From this, we can infer that the adversar-
ial training restrains the non-robust filters in order to exclude
the non-robust features from the representation layer.

The neural network trained by a standard method utilizes
both robust and non-robust features to classify an image. This
means all the weights involved with robust and non-robust
features are activated in the standard training. Therefore,
when the adversarial training is conducted after the standard
training is done, the training should focus on deactivating the
non-robust features.

In this paper, we claim that the gradient magnitude of the
non-robust features should be bigger than that of the robust
features. To justify this claim, two different methods to re-
move filters are attempted. After we train a network with the
original dataset, adversarial examples are added, and the gra-
dients are computed. Based on the gradient magnitudes, fil-
ters are sorted in descending order. Now, two cases are com-
pared: (1) 60% of filters in a layer are removed from the top
of the sorted filter list, (2) 60% of them are removed from the
bottom of the list. Fig. 3 shows 83.69% of the clean accuracy
and 45.6% of the adversarial accuracy when the filters are re-
moved from the top of the list. When the filters are removed
from the bottom, the clean accuracy is 80.33%, and the adver-
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(a) Clean Accuracy of Standard Fine-Tuning
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(b) Clean Accuracy of Robust Fine-Tuning
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(c) Adversarial Accuracy of Robust Fine-Tuning
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(d) Clean Accuracy of Standard Fine-Tuning
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(e) Clean Accuracy of Robust Fine-Tuning
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(f) Adversarial Accuracy of Robust Fine-Tuning

Fig. 4. Test results of pruning methods with l2 norm. (a), (b), (c) are the test results of VGG-16, and (d), (e), (f) are the test
results of ResNet-18. All the results are estimated with CIFAR-10.

sarial accuracy is 38.24%. Both the clean and the adversar-
ial accuracies for the case where the filters are removed from
the top are much better. From these experimental results, we
claim that the weights of non-robust filters change abruptly
when the adversarial training is conducted after the standard
training is done.

Based on the following key claims; 1) Adversarially
trained neural networks utilize only the robust features, 2)
The weights of non-robust filters change abruptly when the
adversarial training is being conducted after the standard
training is done, we define the non-robust filter as:

argmax
F

∑
Fj∈Li

‖ ∇xadvL
(
Fj , y, xadv

)
‖2 (3)

whereF is the filter that maximizes the sum of l2 norms of the
gradient for adversarial example xadv in convolutional layer
Li. Depending on the pruning rate, more than one F may be
found. The l2 norm is computed with the gradients to take the
direction of gradients as well as the magnitude into consider-
ation.

3.2. Robustness-aware Filter Pruning

Based on the key claims mentioned above, we propose a new
scheme called Robustness-aware Filter Pruning (RFP) that
removes the non-robust filters to make the neural network ro-

bust. RFP is described in Algorithm 1. In RFP, after the stan-
dard training with the original dataset is conducted, the gra-
dients of the adversarial examples with the l2 PGD attack are
calculated. Then, we calculate the l2 norm of each filter in a
convolutional layer with the calculated gradients. Based on
the l2 norm values, filters are sorted in descending order, and
a set of filters are pruned from the top. The number of filters
to be pruned is determined by the pruning rate. Experimental
results will verify the effectiveness of the proposed method.

4. EXPERIMENTS

In this section, the implementation details and the experimen-
tal environment will be addressed. The experiments are car-
ried out with PyTorch 1.6 on an NVIDIA TITAN RTX GPU.

4.1. Setup

Datasets and Networks Experiments are conducted on
CIFAR-10 [13] and ROBUST CIFAR-10 [8] as datasets. The
ROBUST CIFAR-10 dataset is used only as the fine-tuning
data while all the evaluations proceed with the CIFAR-10 test
set. Two network architectures are chosen: VGG [14] and
ResNet [15]. Because it is hard to know the robust features
of each image, 100 images are randomly selected from each
class. So, a total of 1,000 images is used as the adversarial



model pruning rate
l1 Norm l2 Norm

Clean Accuracy Adversarial Accuracy Clean Accuracy Adversarial Accuracy
(n-Norm [11] / FPGM [12] / RFP)

VGG-16

0 (baseline) [8] 80.79 45.12 80.79 45.12
0.2 86.12 / 86.51 / 84.66 45.93 / 45.99 / 47.60 86.38 / 85.21 / 85.57 46.56 / 48.10 / 49.01
0.4 84.26 / 84.25 / 85.01 44.05 / 43.29 / 45.60 83.54 / 83.64 / 83.07 47.88 / 48.08 / 48.72
0.6 80.52 / 83.68 / 83.21 39.58 / 38.14 / 42.94 83.28 / 81.92 / 83.69 41.02 / 43.75 / 45.60
0.8 78.73 / 78.02 / 78.03 34.96 / 28.99 / 36.23 80.75 / 80.38 / 80.70 39.79 / 41.56 / 43.58

ResNet-18

0 (baseline) [8] 81.4 45.86 81.4 45.86
0.2 87.24 / 86.50 / 87.29 45.37 / 46.99 / 46.85 84.18 / 84.40 / 84.50 48.74 / 47.77 / 52.10
0.4 86.89 / 85.74 / 85.83 45.11 / 44.47 / 45.66 83.63 / 83.61 / 83.56 47.76 / 45.77 / 48.58
0.6 84.86 / 83.86 / 83.72 39.03 / 41.05 / 41.61 82.98 / 83.28 / 82.82 46.05 / 43.20 / 49.58
0.8 82.01 / 81.27 / 79.45 32.51 / 32.04 / 31.18 81.83 / 82.66 / 81.81 42.57 / 42.71 / 43.20

Table 1. Accuracy comparison of pruning methods with l1 and l2 norm on VGG-16 and ResNet-18, fine-tuning with ROBUST
CIFAR-10. The baseline[8] results are reproduced.

examples. All the training proceeds with Stochastic Gradient
Descent(SGD) and the same hyper-parameter settings.

Filter Pruning Methods RFP is compared with the existing
two filter pruning methods. The n-Norm pruning with the l2
norm(l2 Norm) [11] prunes the filters with smaller l2 norms.
Originally, the l1 norm was used to prune filters in [11], but
the l2 norm was additionally used to compare the method
with RFP under the same conditions. In addition, another
method called Filter Pruning via Geometric Mean(FPGM)
[12] is compared. In FPGM, the filters that are farther from
the geometric mean of the l2 norm of the filters are pruned.

Adversarial Attack Method As the adversarial attack, the
Projected Gradient Descent(PGD) attack with the l2 norm is
used. The PGD attack is known to be one of the most power-
ful attacks. As used in [8], the ε = 0.25 for the PGD attack
on CIFAR-10 is used. When calculating the gradients in RFP,
we set ε = 0.3 to reveal more drastic effect of the adversarial
attack and to make a clear distinction from the robust filters.

4.2. Experimental Results

In Fig. 4, (a), (b) and (c) summarize the experimental re-
sults on VGG-16 while (d), (e) and (f) summarize results on
ResNet-18. (a) and (d) are fine-tuned on the original dataset
(called Standard Fine-Tuning), and the others are fine-tuned
with the aforementioned robust dataset (called Robust Fine-
Tuning). All baselines are trained with datasets without
pruning and fine-tuning. In other words, the pruning rate is 0
for the baseline.

VGG-16 Applying the compared pruning methods and RFP
to the VGG-16 model, clean accuracies are similar to that of
the standard training. The baseline network shows 90.57%
clean accuracy. The l2-Norm pruning achieves the clean ac-

curacy of 90.61% and FPGM achieves 90.57%. Similarly,
RFP achieves the average accuracy of 90.7%. With the robust
training, the baseline shows 80.79% clean accuracy, and the
three compared pruned networks show the average accuracy
of 83.44%, 83.52%, 83.31%, respectively.

In case of the adversarial accuracy, RFP achieves a supe-
rior performance. While the baseline shows 45.12% adver-
sarial accuracy, RFP achieves 51.26% adversarial accuracy
with 0.1 as the pruning rate. Furthermore, RFP shows a better
accuracy as the pruning rate is getting bigger. While pruning
50% of the total parameters, the average adversarial accuracy
is 49.57% and the clean accuracy is 84.17%.

ResNet-18 In [8], ResNet-18 was employed and 84.1%
of clean accuracy and 48.27% adversarial accuracy were
achieved. Somehow, when we reproduced the results us-
ing the same evaluation setting, 81.4% clean accuracy and
45.86% adversarial accuracy were attained.

Similar to the VGG-16 case, experiments with ResNet-18
demonstrate similar levels of clean accuracy to that of the
standard training. RFP shows the average clean accuracy of
83.47%, while the highest accuracy is 84.86% with the robust
training. In the case of the adversarial accuracy, RFP achieves
an outstanding performance overall. It achieves 52.1% ad-
versarial accuracy, which is better than the method in [8] by
3.8%.

The results show that pruning over 60% of parameters is
not much effective for both clean and adversarial test. We
analyze that it is because of the number of non-robust filter is
limited. Therefore, as pruning rate increases, the adversarial
accuracy decreases. And also, because the non-robust filters
are as useful as robust filters for classifying clean data, it is
hard to avoid the degradation in performance when pruning
rate increases.



4.3. Comparison with the l1 and l2 norms

RFP utilizes the l2 norm to consider the directional informa-
tion of the gradient. Table 1 shows the comparison results of
the pruning methods with l1 and l2 norms. With the l2 norm,
RFP shows the best adversarial accuracy with respect to ev-
ery pruning rate. Regarding the l1 norm, the clean accuracy
of RFP is better. Based on the excellent adversarial accu-
racy of RFP with respect to the l2 norm, it can be claimed
that considering the directional information of the gradient is
very effective. Therefore, in Section 4.2, all the methods were
compared with the l2 norm. On the other hand, the n-Norm
pruning works well on l1 norm. When the l1-Norm pruning
is compared with RFP, RFP works better on the adversarial
accuracy.

5. CONCLUSION

In this paper, we proposed a novel method called Robustness-
aware Filter Pruning (RFP) that prunes the filters that are in-
volved with non-robust features. RFP achieved 52.1% adver-
sarial accuracy, while the previous study with a robust dataset
achieves at best 45.86%. In the future, we plan to measure the
amount of robust features in an image and study the correla-
tion with the accuracy of RFP.
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