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ABSTRACT We present a framework for attention-based video object detection using a simple yet effective
external memory management algorithm. An attention mechanism has been adopted in video object detection
task to enrich the features of key frames using adjacent frames. Although several recent studies utilized
frame-level first-in-first-out (FIFO) memory to collect global video information, such a memory structure
suffers from collection inefficiency, which results in low attention performance and high computational cost.
To address this issue, we developed a novel scheme called diversity-aware feature aggregation (DAFA).
Whereas other methods do not store sufficient feature information without expanding memory capacity,
DAFA efficiently collects diverse features while avoiding redundancy using a simple Euclidean distance-
based metric. Experimental results on the ImageNet VID dataset demonstrate that our lightweight model
with global attention achieves 83.5 mAP on the ResNet-101 backbone, which exceeds the accuracy levels
of most existing methods with a minimum runtime. Our method with global and local attention stages
obtains 84.5 and 85.9 mAP on ResNet-101 and ResNeXt-101, respectively, thus achieving state-of-the-art
performance without requiring additional post-processing methods.

INDEX TERMS Attention mechanism, diversity-aware, neural networks, spatio-temporal, video object
detection.

I. INTRODUCTION attention [12]. Because the construction of an informative

Recent advances in deep convolutional neural networks [1],
[2], [3], as well as the successful development of object
detection networks [4], [5], [6], [7], have driven significant
progress in image object detection. However, single-image-
based object detectors fail to achieve sufficiently high accu-
racy when detecting objects in videos, mainly due to severe
deterioration effects such as motion blur, partial occlusion,
camera defocus, and pose variation. To remedy this problem,
video object detection methods commonly utilize spatiotem-
poral information to enhance the current frame features.
In particular, attention-based methods [8], [9], [10], [11]
model relationships between object features using attention
mechanisms, which are derived from so-called multi-head
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key set is important for attention, these mechanisms collect
diverse features from images within a video. Whereas local
attention methods [11] utilize features from adjacent frames
to construct a key set, global attention methods [8], [10] form
aricher key set by collecting features from randomly sampled
frames. Most attention-based methods save the extracted
features into their external memory structure and reuse them
to keep their key set informative. For example, as shown in
Fig. 1(a), methods that employ a FIFO-type memory struc-
ture [8], [10], [11] sample features from reference frames and
collect them in the same order they were sampled.

However, existing external memory structures suffer from
collection inefficiency due to object-level redundancy, which
occurs because most images in a video include objects
that do not exhibit significant changes in appearance over
time. Methods that employ FIFO-type memory do not
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FIGURE 1. Comparison of memory management methods. (a) First-in
first-out (FIFO) memory: The oldest frame features in memory are
abandoned without considering redundancy. (b) Diversity-aware memory:
Our method selects features to be saved in an object-wise manner based
on diversity. Without redundancy, all feature information can be collected
in compact memory. Best viewed in color.

appropriately account for object-level redundancy, which
limits their performance for the following two reasons:

A. DIFFICULTY OF COLLECTING DIVERSE FEATURES

In the FIFO-type memory structure, certain features that are
relatively rare yet informative may inevitably be erased in
the process of an update because the FIFO approach only
considers the sampled time of each frame, not feature infor-
mation itself. Conversely, these features are less likely to be
resampled because they appear less frequently.

B. KEY SET IMBALANCE
Because FIFO-type memory does not handle feature redun-
dancy, semantically similar features can take up the majority
of memory space. Although existing methods often employ
attention mechanisms with imbalanced memory as the key
set, these mechanisms are vulnerable to key set imbalance
because the attention score proportionately increases with the
number of redundant features, which leads to performance
degradation. Therefore, even when informative features are
collected in memory, they have limited influence when the
attention score is biased toward major redundant features.
To address these issues, we propose a novel framework
called diversity-aware feature aggregation (DAFA), which
enhances the current feature using a nonredundant and
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balanced reference feature set. This feature set is managed by
a novel memory management scheme called diversity-aware
memory management (DAMM), which manages the contents
of external memory based on the diversity of features.
DAMM attempts to collect diverse features by iteratively
selecting a feature that is least similar to the samples.
Similarity is estimated using Euclidean distance, which is
a simple and natural indicator. Because our method tra-
verses diverse points from the sampled features regardless
of their frequency of occurrence, it generates an informa-
tive and efficient feature set that improves attention per-
formance. As shown in Fig. 1(b), DAMM collects various
object-level features (denoted by color) from a video with
a minimal amount of information redundancy, whereas the
FIFO-style external memory approach illustrated in Fig. 1(a)
does not. Our main contributions are therefore summarized
as follows:

« We propose a novel memory management scheme called
DAMM for object-level fine-grained key set construc-
tion. Using diversity as a quantitative indicator, DAMM
ensures efficiency and diversity when collecting global
information.

« We propose a video object detection framework called
DAFA, which fully aggregates both local and global
information into the current feature. Experiments on the
ImageNet VID [13] and YouTube Objects dataset [14]
demonstrated that DAFA achieves state-of-the-art per-
formance.

e Our experimental results confirm that fine-grained
diversity-aware key set construction achieves both high
performance and low computational cost in video object
detection tasks.

Il. BACKGROUND AND RELATED WORK

A. SINGLE IMAGE OBJECT DETECTION

Advances in deep convolutional neural networks (CNNs)
have made it possible to achieve excellent performance
in image-classification tasks. For instance, ResNet [1] and
ResNeXt [3] show excellent performance in classification
tasks and they are commonly used as the pretrained back-
bone for object detection. The single-image object detec-
tion task, commonly defined as the problem of inferring
multiple object classes and locations in a single image,
can be addressed in two ways: a two-stage approach or
a one-stage approach. Two-stage object detection typically
comprises a region proposal stage and a detection stage.
The region proposal network (RPN) infers object propos-
als in an image, and the cropped features of each object
region are fed into the detection network for classifica-
tion and box refinement. In contrast, single-stage object
detection generally omits the region proposal network and
detects objects directly from the feature grid. Although
both approaches have advantages and disadvantages, mod-
ern video object detection networks generally employ the
two-stage method owing to the ease of utilizing object-level
features.
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TABLE 1. Comparison of DAFA with previous attention-based methods.

based on indirect info?

OGEMN SELSA RDN MEGA MAMBA

Methods 9] [10] (1] 8] [15] DAFA (Ours)
Attention mechanism? v v v v v v
Use local information? v v v v
Use global information? v v v v v
Object-level memory update? v v v
Memory management v v v
v

Memory management
based on direct info?

B. VIDEO OBJECT DETECTION

Video object detection (VOD) is more challenging than
single-image object detection because image deterioration
frequently occurs as a result of object or camera motion.
To alleviate this problem, early video object detectors pre-
dicted pixel- and object-level movements, and utilized them
to aggregate features between the current frame and its adja-
cent frames. DFF [16], FGFA [17], and THP [18] employ
optical flow estimation to aggregate information on spa-
tially adjacent pixels. MANet [19] predicts both pixel- and
object-level movements to conduct object-level aggregation.
D&T [20] includes both a detection model and a tracking
model to complement each other. STSN [21] uses deformable
convolution to learn pixel-level feature movements. RNN-
based methods [22], [23] model the relationship between
extracted features and updated frames to construct long-term
memory. Attention-based methods [8], [9], [10], [11], [15]
exploit the attention mechanism [12], [24] to train feature
dependency. SELSA [10] measures the relationship between
proposals and the full sequence by aggregating global fea-
tures from randomly sampled images. RDN [11] constructs
an informative key set by selecting the features of local
frames based on objectness scores. MEGA [8] uses both
local and global features to improve the measure of depen-
dency and exploits a long-range memory queue to increase
the lifetime of the precedent local features. OGEMN [9]
and MAMBA [15] presents their own memory management
scheme which writes or erase features based on their defined
criteria.

C. ATTENTION MECHANISM

Attention mechanism [12], [25] has been proposed as a way to
capture the relationship between sequential inputs in natural
language processing tasks. The most widely used form of
attention is scaled dot-product attention [12]. The formal
definition of scaled dot-product attention is as follows.

T

0K
1% 1
\/d_k) (M

Attention(Q, K, V) = softmax(

It calculates the combined attention weights of a key set
K for a query set Q, and scale the weights by dimension dj.
Then the scaled weights are used to calculate a weighted sum.
Usually, query is the information we want to know, and key
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is the candidate information to be combined. value set V is
generally same as the key. Recently, the scope of attention
mechanism is not limited to sequential inputs and it has been
widely used in various vision tasks [8], [24], [26], [27].

D. SAMPLING LOCAL AND GLOBAL INFORMATION IN
VIDEO TASKS

We investigated several video-related tasks which deal with
local and global information. In the video object detec-
tion (VOD) task, recent methods (MEGA [8], SELSA [10],
RDN [11] and FGFA [17]) sample features in sequential
(local information) or random (global informaion) manner
and save them in FIFO. Methods in video object segmentation
(VOS) task (such as STCN [26]) mainly focus on local
information than the global information, since detailed pixel-
by-pixel classification is required. Thus, FIFO is mainly used
in VOS task. Methods in the action recognition task (such as
TSN [28]) use random sampling to obtain global information,
which is similar to the sampling method of SELSA and
MEGA in VOD. However, they just use multiple samples and
no further management scheme exists. Considering the above
investigations, unfortunately, even relatively recent papers
still use a simple FIFO or do not have memory management
schemes and the limitation of FIFO is not discussed. Due to
the structural characteristics of FIFO, memory features that
could potentially help current features are inevitably deleted
over time. Thus We can expect deterministic information loss
in FIFO leads to low performance in its task. Our paper
addresses and improves this limitation by presenting a new
external memory management method.

E. EXTERNAL MEMORY APPROACH FOR VOD

The neural Turing machine [29], which is an neural net-
works model designed with an external memory net-
work, demonstrated that external memory outperforms long
short-term memory in several memorization tasks. Subse-
quently, OGEMN [9] first employed an external memory
approach to VOD. Unlike previous methods that utilize FIFO
memory, the objectness score and class label is a novel
criterion for storing and excluding each feature. Further-
more, whereas other approaches [8], [10], [11], [17] save
and erase features frame-wise (all object features in a frame
are saved or erased at the same time), the minimal save and
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FIGURE 2. Simplified view of the DAFA framework. At each frame time, both the current image and the randomly-sampled
reference image are fed into the feature extraction layers. After the region proposal by RPN, extracted features are
ROI-aligned by the region of interests (ROIs), and object-level features (Fcur and Fef) are generated. The external memory
is then updated using the object features (Fmem and Ff) as input by Diversity-aware Memory Management (DAMM)
algorithm. The updated memory features(Fmem) are utilized as a key set of the feature aggregation module to enhance the
current feature queries (Fcur). Using enhanced current features, the detection layer outputs detection results. Best viewed
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in color.

erase unit of OGEMN is pixel or object-level feature, which
is a more fine-grained approach. MAMBA [15] utilizes a
random sampling strategy to read, write, and erase proce-
dures to alleviate memory redundancy and reduce compu-
tation costs. Our approach also adopts external memory to
manage long-term information. Unlike previously designed
external memory methods, our method does not rely solely
on indirect information (objectness score, attention score)
or randomness, instead using direct information (comparing
extracted vectors itself) to manage object features. A com-
parison of our method with existing approaches is presented
in Table 1.

Ill. OUR APPROACH

A. DIVERSITY-AWARE FEATURE AGGREGATION NETWORK
In this paper, we propose a novel framework called DAFA,
which enhances current features using a carefully managed
key set. The key set is managed in a fine-grained object-level
manner using a novel memory management scheme called
DAMM.

The DAFA framework operates as follows: To enhance
the current frame features (F¢,,), a set of features (F.f) are
extracted from randomly selected images in the same video
sequence as F,. Subsequently, a memory feature set (Fe)
is updated using F as the candidate feature. The memory
update involves both the collection and deletion processes of
object-level features using the DAMM method. After Fep, is
updated, the feature aggregation module is applied to enhance
F.,r by using F,., as akey set. Finally, the enhanced features
are fed into a detection network to generate the detection
results. An overview of DAFA is presented in Fig. 2, and the
inference procedure is described in Algorithm 1.
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Algorithm 1 Inference Algorithm of DAFA
# I;: image at time ¢
# Feat: backbone and region proposal network
# DAMM: diversity-aware memory management
# FA: feature aggregation module
# Detect: detection head for object proposals
Input: V (video sequence)
Qutput: B (object boxes)
1: fori < 1tondo

2:  # extract features from reference images

3: Iy =random_sample(V)

4: Fyr = Feat(lyer)

5. # memory update with merged feature set
6: Fiem = DAMM(FmemAFref)

7: end for

8: for I, in V do

9:  # extract features from current frame image
10:  Fgy,r = Feat(l;)

11:  # enhance current feature with feature aggregation
12: Feur = FA(F curs Finem)

13:  # detect on enhanced current feature

14: By = Detect(ﬁcur)
15: end for

B. DIVERSITY-AWARE MEMORY MANAGEMENT

We introduce a novel memory management method called
DAMM, which stores the maximum amount of information
with a minimum memory cost. Unlike previous methods,
our reading and writing protocols were unified into a single
operation. DAMM updates the contents of external memory
at each frame time to enhance global attention performance.

VOLUME 10, 2022
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Assume that Fy,e, is stored in external memory, and F,y is
newly sampled. For feature selection, Fiep, and F,r are first
merged into U. We can then define the memory management
problem by selecting the least redundant n samples from
the candidates in U. However, finding the best set using an
exhaustive search is an NP-hard problem. Therefore, we pro-
pose a greedy algorithm that sequentially selects the optimal
nonredundant feature from U.

We refer to the Euclidean distance between two features
X,y as ryy. Although we cannot define an exact threshold
for feature redundancy, we can determine that feature redun-
dancy is inversely proportional to r, y. To sequentially select
a feature, we then define the diversity between a feature and a
set of selected features. A diversity metric between a feature
x € U and feature set S can be calculated as

dy.s = minry . 2
x,S yes X,y ( )

At each selection iteration, DAMM selects a feature x with
largest diversity, which can be defined as follows.

arg max dy s 3)
xeU

Using this objective, DAMM selects a feature from U at
each selection iteration and sequentially appends it to the
set S. After n selection iterations, the completely selected
set S is updated to the new Fj,p,. Our algorithm is similar
to the farthest point sampling (FPS) algorithm, which is
widely employed in the point cloud domain [30], [31]. See

Algorithm 2 for additional details.

C. FEATURE AGGREGATION MODULE

After Fep, is attained by the DAMM algorithm, we update
F.,» using a feature aggregation module. F,, and F,,, are
used as query set Q = {g;} and key-set K = {k;}, respectively.
We used a feature aggregation mechanism similar to those
found in [8], [9], [10], and [11], which were inspired by
the multihead attention in [12]. However, we did not apply
spatiotemporal positional encoding in the global attention
stages because the time difference between ¢g; and k; can be
much longer than that incurred by previous methods. Our fea-
ture aggregation module jointly attends to information from
diverse perspectives using multiple heads. First, we multiply
gi and k; by the linear transformation matrices Wy and Wk,
respectively, to project them into the same vector space. Each
embedding is then split into M smaller features channel-wise
to conduct M multihead attention. We can formulate each
item of projected queries (¢7") and keys (kj’”) as

Wo - g; = concat[{g)"}} ], @)
W - kj = concat[{k/"})r ], (5)

where m denotes the mth attention head. The attention score
and weight between a query and key are computed by

kI (")
A

s(g" k" = ©)
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exp(s(g)", k")
W = y
TS expls(q k)

where d is the channel dimension of the split queries and keys.
We can then calculate the aggregation for the ith query as

agg(qi, K) = Wy - concat[{ )~ Wjkphm—_,]. (8
J

(N

where concat denotes a channel-wise concatenation and Wg
denotes a linear transformation matrix. Finally, the aug-
mented feature f is obtained as follows:

f(qi, K) = q; + agg(qi, K). &)

In the case of multiple aggregation stages, a nonlinear
transformation composed of a fully-connected layer and a
ReLU activation function is inserted between each pair of
stages.

Algorithm 2 Diversity-Aware Memory Management

# m: number of features in U

# n: number of features in S

# D: m x* m Euclidean distance matrix

# ds: diversity between features in U and S
# sel: indices of selected features

Input: U (candidate features)

Output: S (selected features)

: # compute distance matrix

: D = compute_euclidean(U, U)

: # initialize index array

: sel = zeros(n)

: # initially select a feature

ds = D[0,:]

fori < 1tondo
# select a farthest one from selected features
idx = argmax(ds)

10:  # save selected feature index

sel[i] = idx

12:  # update diversity metric for updated S

13:  ds = pointwise_min(ds, D[idx,:])

14: end for

15: § = U.index_select(sel)

—_
—_

D. ANALYSIS OF MEMORY MANAGEMENT POLICY

A video generally includes information regarding various
visual changes caused by rare poses, motion blurs, and
occlusions. However, most other information is redundant
because cameras capture similar scenes with small temporal
gaps. In the context of information entropy, the redundancy
removal function of DAMM is effective because it increases
entropy and makes memory more informative. In contrast,
most previous methods exhibit low entropy as a result of
redundant information. In extreme cases where most frames
visually overlap, because memory is updated by the FIFO
approach, object features are deleted without accounting for
priority. Consequently, relevant information that occurs early
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in the video is deleted, and most of the memory space is occu-
pied by duplicate features. To avoid this, our method rejects
low-diversity features, thereby maintaining the diversity of
memory even under inputs with highly redundant features.
Therefore, our method preserves overall feature information
with a smaller memory capacity than existing methods.

Also, DAMM’s diversity-based feature selection is robust
against deteriorated objects without any algorithmic comple-
mentation because DAMM takes objects suggested by RPN
as input. RPN returns top-k objects in order of objectness
score per image, and thus object candidates of DAMM are
limited to features with high objectness scores.

IV. EXPERIMENTS

A. DATASETS AND EVALUATION

We used the same settings as those in FGFA [17] to train
our model. Because ImageNet VID does not have sufficient
samples, we combined it with the ImageNet DET dataset.
Of the 200 categories comprising the ImageNet DET dataset,
we used 30 categories that overlap with the ImageNet VID
dataset. We evaluated the proposed method using the Ima-
geNet VID validation set, which consists of 3862 videos
for training and 555 videos for validation. To compare the
object detection performance of our method with that of
existing methods, we report mean average precision (mAP)
with threshold of IoU > 0.5.

B. BACKBONE AND DETECTION NETWORK

We employed ResNet-101 and ResNeXt-101 as the main
backbone architectures. To increase the resolution of
extracted features, we changed the stride of the first con-
volution block in the conv5 stage from 2 to 1. We imple-
mented a two-stage Faster-RCNN network, which has an
RPN between the backbone and detection networks. The
RPN head predicts objectness scores and box coordinates
for 12 anchors (three aspect ratios of {1:2, 1:1, 2:1} and
four scales of {642, 1282, 2562, 5122}) for each feature pixel.
After the proposals were sorted by objectness scores, we used
the top 300 proposals from the current frame and 75 from
the reference frames for training and testing, respectively. For
each proposal, a7 x 7 ROI-align and 1024-D fully-connected
layer were used to extract object-level features.

C. IMPLEMENTATION DETAILS OF DAFA

There are two variants of our method: DAFA_G and
DAFA_F. Whereas DAFA_G only exploits global attention,
DAFA_F initially adds local attention stages to ensure more
effective information collection. In the local attention stage,
we applied a FIFO-type memory similar to that in RDN [11]
or MEGA [8]. The size of the temporal window (7;) was
set to 25. Based on the objectness scores from each frame
in the temporal window, 75 object features were selected as
base features, and 15 were selected as advanced features. The
local stage consists of three phases that gradually enhance
the current features. In the first phase, the current frame

93458

features and advanced features are enhanced by the base
features using a feature aggregation module. In the second
phase, the current and advanced features are enhanced by the
advanced features. In the final phase, the current features are
enhanced by the advanced features. The Long Range Memory
of MEGA, which was introduced to extend the visible frames
of local memory, is not used, as that range is covered by
global attention. Features from randomly shuffled images
are managed in global memory using DAMM. The global
attention stage further enhances the current features with
features in global memory. The enhanced current features are
then fed into the fully-connected layer to predict the classes
and bounding boxes.

D. TRAINING DETAILS

We initialized the backbone using the ImageNet pretrained
weights. In both training and testing stages, the input images
were resized to a shorter side of 600 pixels. We trained the
entire model on four RTX 3090 GPUs with the minibatch
size set to one per graphics card for a total batch size of
4. A single minibatch consisted of one current frame, four
global reference frames, and two local reference frames. The
global reference frames were randomly sampled from a video
with the same sequence as the current frame. Because each
reference frame had 75 object features, a total of 300 object
features were obtained. To mimic the managed global mem-
ory in the testing phase, we selected 50% of the global ref-
erence features using DAMM. Local reference frames were
randomly sampled from adjacent frames within the temporal
window. We trained our model using the SGD optimizer
with a learning rate of 0.001, momentum of 0.9, and weight
decay of 0.0001. We trained the entire architecture over 120K
iterations. We set the learning rate to 0.001 for the first 80K
iterations and decayed it to 0.0001 for the last 40K iterations.
The RPN and detection losses were only calculated for the
current frame.

E. MAIN RESULTS

1) ACCURACY COMPARISON

Table 2 compares the accuracy results of the proposed method
with those of existing state-of-the-art methods. To ensure
fairness, all methods were compared without applying any
postprocessing-based re-scoring techniques such as Seq-
NMS [32] or BLR [11]. All performance results are based
on mAP@50 (mean average precision with IoU > 0.5) unless
otherwise stated. Existing methods used for comparison
include motion-based methods, such as FGFA, MANET,
THP, and STSN, and attention-based methods, such as
OGEMN, SELSA, RDN, MEGA, and MAMBA. Under the
ResNet-101 backbone settings, our DAFA_F exhibited an
almost negligible performance difference (84.5%) compared
to MAMBA (84.6%), as summarized in Table 2. Our method
with only the global attention module (DAFA_G) achieved
83.5% mAP. Note that DAFA_G achieved higher accuracy
than MEGA, which utilizes both local and global attention.
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TABLE 2. Accuracy comparison of the video object detection methods for
the ResNet-101 (R101) and ResNeXt-101 (X101) backbones on the
ImageNetVID validation set.

Methods | Backbone | local global | mAP(%)
FGFA [17] R101 v 76.3
MANet [19] R101 v 78.1
THP [18] R101+DCN v 78.6
STSN [21] R101+DCN v 78.9
OGEMN [9] R101+DCN v 80.0
SELSA [10] R101 v 80.3
RDN [11] R101 v 81.8
MEGA [8] R101 v v 82.9
MAMBA [15] R101 v 84.6
DAFA_G R101 v 83.5
DAFA_F R101 v v 84.5
SELSA [10] X101 v 83.1
RDN [11] X101 v 83.2
MEGA [8] X101 v v 84.1
MAMBA [15] X101 v 85.4
DAFALF | Xi01 | v 859

TABLE 3. Comparison of the attention-based methods with the
ResNet-101 backbone and the FasterR-CNN detector. The runtime of all
compared methods were measured on an RTX3090 GPU.

stages ref. feats

Methods (local/global)  (local/global) mAP(%)  time(ms)
SELSA [10] 0/2 0/12600 80.3 123.7
RDN [11] 3/0 6105/0 81.8 93.1
MEGA [8] 3/1 5250/750 82.9 121.8
DAFA_G 0/2 0/900 83.5 54.9
DAFA_F 3/1 2625 /750 84.5 108.1

Our key component, DAMM, computes diversity based on
object features, thus preforming better with a more robust
feature extractor. With a stronger ResNeXt-101 backbone,
our full-featured DAFA_F achieved an 85.9% mAP, which
is the highest accuracy among all competitors.

2) SPEED-ACCURACY TRADE-OFF

Table 3 presents a runtime comparison between our method
and existing attention-based methods. We also show the
number of iteration stages and reference features for a fair
comparison. The number of reference frames is not dis-
played because our method uses fine-grained object-level
management. For a quantitative comparison, the number of
reference features for each iteration stage was summed. For
example, the total number of local reference features of
DAFA_F was calculated as 25(77)*(75(stage1)+15(stage2)+
15(stage3)) = 2625. We set the number of proposals of
RPN in SELSA to 300 and that in other methods to 75 to
maintain consistent settings with those used in the original
studies. SELSA and RDN are representative examples of
methods that employ global and local attention, respectively.
SELSA models a global relationship by randomly sampling
images throughout a video, whereas RDN models the local
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TABLE 4. Comparision of vanilla attention module [12] and Feature
Aggregation module. The module comparison is conducted on DAFA_G
model.

Attention Module  Transformer [12]

mAP(%) 83.1 83.5
runtime(ms) 52.7 54.9

Feature Aggregation

TABLE 5. Net effects on the accuracy by adopting various combinations
of DAMM and the attention stages.

Model @ ®» © @ @

global attention v v v v

local attention v v
DAMM v v
mAP(%) 754 81.8 825 835 845

relationship around the current feature. MEGA models both
global and local relationships with a FIFO-type memory and
applies Long Range Memory to extend the range of visible
frames. As summarized in Table 3, DAFA_F outperformed
MEGA by 1.6% while using the same local and global
attention stages. Although the two algorithms feature the
same number of local and global attention stages, MEGA
uses Long Range Memory to improve coverage of the local
range. Consequently, the number of local reference features
is higher than that of DAFA_F, which incurs a higher com-
putational cost. This confirms that DAMM creates a robust
feature set even with smaller object features. Fig. 3 displays
a comparison of video object detection results for MEGA
and DAFA_F. It is apparent our detection results are robust
even without the use of Long Range Memory. DAFA_G,
which uses two-staged global attention, also produced 0.6%
higher performance than MEGA while achieving a runtime
of 54.9 ms, the lowest among all compared methods.

F. ABLATION STUDY
We conducted an extensive set of experiments to determine
the net effects of the key components of DAFA.

1) NET EFFECTS ON ATTENTION MODULE

Table 4 presents differences in accuracy and inference speed.
It is apparent that the feature aggregation module produces
0.4% higher performance than the vanilla transformer at a
slightly higher runtime (2.2 ms), which verifies that our
feature aggregation module enhances overall performance
with negligible cost.

2) NET EFFECTS ON ACCURACY ENHANCEMENT

Table 5 presents the net effect on accuracy under various
combinations of attention stages and DAMM. Model (a) is the
baseline model, which is a single-frame-based Faster-RCNN.
Model (b) features two global attention stages with FIFO-type
memory. Model (c) includes three local attention stages and
one global attention stage. Model (d) has a global attention
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Single-frame
Faster R-CNN
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MEGA

DAFA
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1 ey N

Single-frame
Faster R-CNN

domestic_cat: 0.26 domestic_cat: 0.21
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MEGA

domestic_cot: 0:53

DAFA

FIGURE 3. Visualized detection comparison between FasterRCNN [31], FGFA [17], MEGA [8], and DAFA_F on two videos in ImageNet VID dataset. The
first to fourth rows show the rare pose case, and the fifth to eighth rows show the motion blur case.

model with DAMM, which corresponds to DAFA_G. Model memory size to 750 and the temporal window size to 25.
(e) is our full-featured DAFA_F model that employs both Note that Model (d) achieved 1.7% higher performance than
local and global attention. By default, we set the global Model-(b), which implies that DAMM yields a significant
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TABLE 6. Effect of varying global attention stages of DAFA_G.

Nstages_g 1 2 3

mAP(%) 82.8 835 832
runtime(ms) 51.8 549 58.0

TABLE 7. Effect of varying the number of reference frames during
training.

Nyef 1 2 3 4 5

FIFO 81.0 81.6 81.7 81.7 81.8
MANAGE  81.7 824 827 828 829

improvement by creating an informative object feature set.
Similarly, Model (e) achieved a 2.0% higher performance
than Model (c). These results show that even when object
features are enhanced from a wide range of local features, our
global attention model with well-managed memory further
improves performance by collecting diverse features from
overall video frames.

3) THE NUMBER OF ATTENTION STAGES

We conducted comparison experiments on global attention
stages Nyqges_ g We experimented with our models by dis-
abling local attention stages for a fair comparison. Each
attention stage consists of our feature aggregation module
with same number of heads (M = 16). Table 6 shows
that performance grows until Nyyqges ¢ = 2 and degrades
after. Because Nyqges ¢ = 2 performs best with reasonable
time consumption, we selected it as default for DAFA_G
model.

4) THE NUMBER OF REFERENCE FRAMES DURING TRAINING
In this ablation study, we aimed to determine the effect of the
number of global reference frames (Nyer) during the training
phase. Intuitively, it is expected that an increase in Nys will
improve the robustness of the global attention module by
using more diverse reference features in the training phase.
Note that Ny, does not affect the inference speed. FIFO in
Table 7 denotes a model that uses frame-level FIFO-type
global memory, and Manage denotes a model that employs
object-level management, as in DAMM. For a fair compar-
ison, the number of global attention stages was fixed at 1,
and the local attention module was eliminated. For both FIFO
and Manage, mAP performance steadily increased with the
increase in Nyr. Therefore, the aggregation of a richer set of
features in the training phase positively affects performance.
We note that Manage performed better than FIFO by up to
1.1%. This result strongly implies that DAMM increases the
range of actually visible features in the test phase regardless
of Ny by collecting diverse features. For an appropriate
trade-off between performance and training time, we set Ny,r
to 4, as in the other experiments in this study.
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TABLE 8. Effect of varying global memory size.

Nmem_g 300 600  900* 1500 3000

mAP(%) 833 834 835 83.5 83.4
runtime(ms) 53.8 542 549 565 583

5) MEMORY SIZE IN TESTING

We conducted an experiment by varying the global mem-
ory capacity in the test phase (Npem_g)- In this experiment,
we used the DAFA_G model to exclude the effect of local
attention. Because the total amount of information within a
video is limited, no further improvement is expected when
the memory capacity is sufficient to store all the information
from the video. Table 8 presents the results of this experiment.
As expected, performance increased with memory size until
Nnem_g reached 1500, after which point performance slightly
decreased. This decrease in performance may be caused by an
increase in the number of false positive samples, such as back-
grounds, in the key set. From this experiment, we found that
a global memory size of 750 achieves the optimal trade-off
between performance and runtime.

G. EVALUATION ON YOUTUBE OBJECTS DATASET

We further evaluated DAFA on the YouTube-Objects (YTO)
dataset [14] to test our model’s generalizability. The YTO
dataset contains 150 videos with a total of 720,000 frames
and 10 categories, which correspond to a subset of ImageNet
VID tasks. Each video contains several shots of consecutive
frames. Because only a few frames were labeled for each shot,
6,087 frames were annotated with 6,975 bounding boxes. The
annotated frames were allocated into training and test sets,
with the latter consisting of 1781 annotated frames. To evalu-
ate DAFA’s performance on the test set, we reused the model
trained on the ImageNet DET and VID sets. No additional
fine-tuning was applied. Localization accuracy was measured
using CorLoc [36], an object localization metric calculated
by dividing the number of correctly localized images by the
number of ground truth images. Results are presented in
Table 9. Data from existing methods [33], [34], [35] were
retrieved from corresponding studies, and we reproduced
Faster-RCNN and MEGA [8] with the ResNet-101 backbone
for fair comparison. [33], [34], [35] boost performance with
strong post-processing, even though it uses a weak feature
extractor (HoG or GoogleNet). Note that T-CNN shows com-
parable performance with Faster-RCNN and MEGA. Our
method outperformed all existing methods by large margins
without additional post-processing. DAFA_G outperforms
MEGA by 0.6% and DAFA_F outperforms MEGA by 1.2%,
which are similar to the main results of Table 2.

H. QUALITATIVE ANALYSIS
1) FAILURE CASE ANALYSIS
We show some failure cases of DAFA in Fig 4. The first row
is an example of missing objects. This occurs when RPN
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FIGURE 4. Failure cases of DAFA on ImageNet VID validation dataset. Each row lists five frames in a video that contains
false negative (snake, motion blur) or false positive (antelope and zebra, occlusion) resuits.

TABLE 9. Localization performance evaluation on YouTube-Objects Dataset. CorLoc is used for evaluation metric.

Method \ airplane  bird  watercraft  car cat cattle dog horse motorcycle train \ Avg.
Kwak [33] 56.5 66.4 58.0 768 399 693 504 563 53.0 31.0 | 55.7
TCN [34] 94.1 69.7 88.2 793 766 186 89.6 89.0 87.3 753 | 76.8

T-CNN [35] 91.8 98.7 85.4 95.0 922 100 957 934 93.9 84.2 | 93.0
FasterRCNN 97.8 100 94.9 969 764 873 751 788 82.6 854 | 875
MEGA [8] 98.9 100 94.4 98.0 89.1 100 913 883 83.6 87.3 | 93.1
DAFA_G 98.3 100 97.0 985 867 992 960 91.1 83.1 86.7 | 93.7
DAFA_F 99.4 100 96.1 98.8  89.1 100 931 972 80.8 88.6 | 94.3

Frame 15  Frame 70 Frame 61 Frame 75

Frame 166

ROIsin =
External
Memory

Detection
Result

FIGURE 5. Visualization of feature aggregation and external memory.

misses objects in significantly deteriorated images caused by
motion blur. DAFA can not aggregate information when no
candidate object exists in the current image, as in the second
column image. Also, If a video is highly deteriorated, DAFA
can collect and aggregate inaccurate information, leading to
misclassifying objects (misclassifying a snake as a lizard in
the first and third column in the first row). Images in the
second and third rows show false positive cases in object
occlusion situations. Because DAFA’s feature aggregation
module cannot distinguish redundant ROIs (like multiple
ROIs for a single object in two videos), they are not sup-
pressed and can be generated as false-positive results. DAFA’s
failure cases are usually caused by low performance of RPN.

93462

Thus, combining the pixel-level attention before RPN, such
as [9], [15], can be a possible solution to this problem.

2) VISUALIZATION OF FEATURE AGGREGATION AND
EXTERNAL MEMORY

Fig. 5 shows how external memory and feature aggregation
work for two video examples. The blue boxes in the figure
in the upper row show the ROIs of memory features in the
external memory, which has the top-2 highest attention scores
for each current feature. Feature aggregation enhances the
current features using memory features. The box in the lower
row of Fig. 5 shows the detection results of enhanced current
features. We observed that visually similar features, although
very far from the current features, tend to have high attention
scores, which shows that the proposed DAMM and feature
aggregation module work as intended.

V. CONCLUSION

In this paper, we present an effective attention-based video
object detection framework, DAFA. DAFA accounts for
diversity when collecting global information to perform video
object detection tasks. One of the key contributions of DAFA
is a novel memory management scheme called DAMM.
DAMM efficiently collects diverse features and alleviates
the imbalance of sampled features to construct an efficient
and robust key set. Experimental results show that DAFA_G
and DAFA_F achieve state-of-the-art performance on the
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challenging ImageNet VID and YouTube Objects dataset in
terms of speed and accuracy.
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