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ABSTRACT We present a framework for attention-based video object detection using a simple yet effective
external memorymanagement algorithm. An attentionmechanism has been adopted in video object detection
task to enrich the features of key frames using adjacent frames. Although several recent studies utilized
frame-level first-in-first-out (FIFO) memory to collect global video information, such a memory structure
suffers from collection inefficiency, which results in low attention performance and high computational cost.
To address this issue, we developed a novel scheme called diversity-aware feature aggregation (DAFA).
Whereas other methods do not store sufficient feature information without expanding memory capacity,
DAFA efficiently collects diverse features while avoiding redundancy using a simple Euclidean distance-
based metric. Experimental results on the ImageNet VID dataset demonstrate that our lightweight model
with global attention achieves 83.5 mAP on the ResNet-101 backbone, which exceeds the accuracy levels
of most existing methods with a minimum runtime. Our method with global and local attention stages
obtains 84.5 and 85.9 mAP on ResNet-101 and ResNeXt-101, respectively, thus achieving state-of-the-art
performance without requiring additional post-processing methods.

14

15

INDEX TERMS Attention mechanism, diversity-aware, neural networks, spatio-temporal, video object
detection.

I. INTRODUCTION16

Recent advances in deep convolutional neural networks [1],17

[2], [3], as well as the successful development of object18

detection networks [4], [5], [6], [7], have driven significant19

progress in image object detection. However, single-image-20

based object detectors fail to achieve sufficiently high accu-21

racy when detecting objects in videos, mainly due to severe22

deterioration effects such as motion blur, partial occlusion,23

camera defocus, and pose variation. To remedy this problem,24

video object detection methods commonly utilize spatiotem-25

poral information to enhance the current frame features.26

In particular, attention-based methods [8], [9], [10], [11]27

model relationships between object features using attention28

mechanisms, which are derived from so-called multi-head29
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attention [12]. Because the construction of an informative 30

key set is important for attention, these mechanisms collect 31

diverse features from images within a video. Whereas local 32

attention methods [11] utilize features from adjacent frames 33

to construct a key set, global attention methods [8], [10] form 34

a richer key set by collecting features from randomly sampled 35

frames. Most attention-based methods save the extracted 36

features into their external memory structure and reuse them 37

to keep their key set informative. For example, as shown in 38

Fig. 1(a), methods that employ a FIFO-type memory struc- 39

ture [8], [10], [11] sample features from reference frames and 40

collect them in the same order they were sampled. 41

However, existing external memory structures suffer from 42

collection inefficiency due to object-level redundancy, which 43

occurs because most images in a video include objects 44

that do not exhibit significant changes in appearance over 45

time. Methods that employ FIFO-type memory do not 46
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FIGURE 1. Comparison of memory management methods. (a) First-in
first-out (FIFO) memory: The oldest frame features in memory are
abandoned without considering redundancy. (b) Diversity-aware memory:
Our method selects features to be saved in an object-wise manner based
on diversity. Without redundancy, all feature information can be collected
in compact memory. Best viewed in color.

appropriately account for object-level redundancy, which47

limits their performance for the following two reasons:48

A. DIFFICULTY OF COLLECTING DIVERSE FEATURES49

In the FIFO-type memory structure, certain features that are50

relatively rare yet informative may inevitably be erased in51

the process of an update because the FIFO approach only52

considers the sampled time of each frame, not feature infor-53

mation itself. Conversely, these features are less likely to be54

resampled because they appear less frequently.55

B. KEY SET IMBALANCE56

Because FIFO-type memory does not handle feature redun-57

dancy, semantically similar features can take up the majority58

of memory space. Although existing methods often employ59

attention mechanisms with imbalanced memory as the key60

set, these mechanisms are vulnerable to key set imbalance61

because the attention score proportionately increases with the62

number of redundant features, which leads to performance63

degradation. Therefore, even when informative features are64

collected in memory, they have limited influence when the65

attention score is biased toward major redundant features.66

To address these issues, we propose a novel framework67

called diversity-aware feature aggregation (DAFA), which68

enhances the current feature using a nonredundant and69

balanced reference feature set. This feature set is managed by 70

a novel memory management scheme called diversity-aware 71

memory management (DAMM), which manages the contents 72

of external memory based on the diversity of features. 73

DAMM attempts to collect diverse features by iteratively 74

selecting a feature that is least similar to the samples. 75

Similarity is estimated using Euclidean distance, which is 76

a simple and natural indicator. Because our method tra- 77

verses diverse points from the sampled features regardless 78

of their frequency of occurrence, it generates an informa- 79

tive and efficient feature set that improves attention per- 80

formance. As shown in Fig. 1(b), DAMM collects various 81

object-level features (denoted by color) from a video with 82

a minimal amount of information redundancy, whereas the 83

FIFO-style external memory approach illustrated in Fig. 1(a) 84

does not. Our main contributions are therefore summarized 85

as follows: 86

• We propose a novel memorymanagement scheme called 87

DAMM for object-level fine-grained key set construc- 88

tion. Using diversity as a quantitative indicator, DAMM 89

ensures efficiency and diversity when collecting global 90

information. 91

• We propose a video object detection framework called 92

DAFA, which fully aggregates both local and global 93

information into the current feature. Experiments on the 94

ImageNet VID [13] and YouTube Objects dataset [14] 95

demonstrated that DAFA achieves state-of-the-art per- 96

formance. 97

• Our experimental results confirm that fine-grained 98

diversity-aware key set construction achieves both high 99

performance and low computational cost in video object 100

detection tasks. 101

II. BACKGROUND AND RELATED WORK 102

A. SINGLE IMAGE OBJECT DETECTION 103

Advances in deep convolutional neural networks (CNNs) 104

have made it possible to achieve excellent performance 105

in image-classification tasks. For instance, ResNet [1] and 106

ResNeXt [3] show excellent performance in classification 107

tasks and they are commonly used as the pretrained back- 108

bone for object detection. The single-image object detec- 109

tion task, commonly defined as the problem of inferring 110

multiple object classes and locations in a single image, 111

can be addressed in two ways: a two-stage approach or 112

a one-stage approach. Two-stage object detection typically 113

comprises a region proposal stage and a detection stage. 114

The region proposal network (RPN) infers object propos- 115

als in an image, and the cropped features of each object 116

region are fed into the detection network for classifica- 117

tion and box refinement. In contrast, single-stage object 118

detection generally omits the region proposal network and 119

detects objects directly from the feature grid. Although 120

both approaches have advantages and disadvantages, mod- 121

ern video object detection networks generally employ the 122

two-stage method owing to the ease of utilizing object-level 123

features. 124
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TABLE 1. Comparison of DAFA with previous attention-based methods.

B. VIDEO OBJECT DETECTION125

Video object detection (VOD) is more challenging than126

single-image object detection because image deterioration127

frequently occurs as a result of object or camera motion.128

To alleviate this problem, early video object detectors pre-129

dicted pixel- and object-level movements, and utilized them130

to aggregate features between the current frame and its adja-131

cent frames. DFF [16], FGFA [17], and THP [18] employ132

optical flow estimation to aggregate information on spa-133

tially adjacent pixels. MANet [19] predicts both pixel- and134

object-level movements to conduct object-level aggregation.135

D&T [20] includes both a detection model and a tracking136

model to complement each other. STSN [21] uses deformable137

convolution to learn pixel-level feature movements. RNN-138

based methods [22], [23] model the relationship between139

extracted features and updated frames to construct long-term140

memory. Attention-based methods [8], [9], [10], [11], [15]141

exploit the attention mechanism [12], [24] to train feature142

dependency. SELSA [10] measures the relationship between143

proposals and the full sequence by aggregating global fea-144

tures from randomly sampled images. RDN [11] constructs145

an informative key set by selecting the features of local146

frames based on objectness scores. MEGA [8] uses both147

local and global features to improve the measure of depen-148

dency and exploits a long-range memory queue to increase149

the lifetime of the precedent local features. OGEMN [9]150

and MAMBA [15] presents their own memory management151

scheme which writes or erase features based on their defined152

criteria.153

C. ATTENTION MECHANISM154

Attentionmechanism [12], [25] has been proposed as away to155

capture the relationship between sequential inputs in natural156

language processing tasks. The most widely used form of157

attention is scaled dot-product attention [12]. The formal158

definition of scaled dot-product attention is as follows.159

Attention(Q,K ,V ) = softmax(
QKT
√
dk

)V (1)160

It calculates the combined attention weights of a key set161

K for a query set Q, and scale the weights by dimension dk .162

Then the scaled weights are used to calculate a weighted sum.163

Usually, query is the information we want to know, and key164

is the candidate information to be combined. value set V is 165

generally same as the key. Recently, the scope of attention 166

mechanism is not limited to sequential inputs and it has been 167

widely used in various vision tasks [8], [24], [26], [27]. 168

D. SAMPLING LOCAL AND GLOBAL INFORMATION IN 169

VIDEO TASKS 170

We investigated several video-related tasks which deal with 171

local and global information. In the video object detec- 172

tion (VOD) task, recent methods (MEGA [8], SELSA [10], 173

RDN [11] and FGFA [17]) sample features in sequential 174

(local information) or random (global informaion) manner 175

and save them in FIFO.Methods in video object segmentation 176

(VOS) task (such as STCN [26]) mainly focus on local 177

information than the global information, since detailed pixel- 178

by-pixel classification is required. Thus, FIFO is mainly used 179

in VOS task. Methods in the action recognition task (such as 180

TSN [28]) use random sampling to obtain global information, 181

which is similar to the sampling method of SELSA and 182

MEGA in VOD. However, they just use multiple samples and 183

no further management scheme exists. Considering the above 184

investigations, unfortunately, even relatively recent papers 185

still use a simple FIFO or do not have memory management 186

schemes and the limitation of FIFO is not discussed. Due to 187

the structural characteristics of FIFO, memory features that 188

could potentially help current features are inevitably deleted 189

over time. ThusWe can expect deterministic information loss 190

in FIFO leads to low performance in its task. Our paper 191

addresses and improves this limitation by presenting a new 192

external memory management method. 193

E. EXTERNAL MEMORY APPROACH FOR VOD 194

The neural Turing machine [29], which is an neural net- 195

works model designed with an external memory net- 196

work, demonstrated that external memory outperforms long 197

short-term memory in several memorization tasks. Subse- 198

quently, OGEMN [9] first employed an external memory 199

approach to VOD. Unlike previous methods that utilize FIFO 200

memory, the objectness score and class label is a novel 201

criterion for storing and excluding each feature. Further- 202

more, whereas other approaches [8], [10], [11], [17] save 203

and erase features frame-wise (all object features in a frame 204

are saved or erased at the same time), the minimal save and 205
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FIGURE 2. Simplified view of the DAFA framework. At each frame time, both the current image and the randomly-sampled
reference image are fed into the feature extraction layers. After the region proposal by RPN, extracted features are
ROI-aligned by the region of interests (ROIs), and object-level features (Fcur and Fref ) are generated. The external memory
is then updated using the object features (Fmem and Fref ) as input by Diversity-aware Memory Management (DAMM)
algorithm. The updated memory features(Fmem) are utilized as a key set of the feature aggregation module to enhance the
current feature queries (Fcur ). Using enhanced current features, the detection layer outputs detection results. Best viewed
in color.

erase unit of OGEMN is pixel or object-level feature, which206

is a more fine-grained approach. MAMBA [15] utilizes a207

random sampling strategy to read, write, and erase proce-208

dures to alleviate memory redundancy and reduce compu-209

tation costs. Our approach also adopts external memory to210

manage long-term information. Unlike previously designed211

external memory methods, our method does not rely solely212

on indirect information (objectness score, attention score)213

or randomness, instead using direct information (comparing214

extracted vectors itself) to manage object features. A com-215

parison of our method with existing approaches is presented216

in Table 1.217

III. OUR APPROACH218

A. DIVERSITY-AWARE FEATURE AGGREGATION NETWORK219

In this paper, we propose a novel framework called DAFA,220

which enhances current features using a carefully managed221

key set. The key set is managed in a fine-grained object-level222

manner using a novel memory management scheme called223

DAMM.224

The DAFA framework operates as follows: To enhance225

the current frame features (Fcur ), a set of features (Fref ) are226

extracted from randomly selected images in the same video227

sequence as Fcur . Subsequently, a memory feature set (Fmem)228

is updated using Fref as the candidate feature. The memory229

update involves both the collection and deletion processes of230

object-level features using the DAMMmethod. After Fmem is231

updated, the feature aggregationmodule is applied to enhance232

Fcur by usingFmem as a key set. Finally, the enhanced features233

are fed into a detection network to generate the detection234

results. An overview of DAFA is presented in Fig. 2, and the235

inference procedure is described in Algorithm 1.236

Algorithm 1 Inference Algorithm of DAFA
# It : image at time t
# Feat: backbone and region proposal network
# DAMM: diversity-aware memory management
# FA: feature aggregation module
# Detect: detection head for object proposals
Input: V (video sequence)
Output: B (object boxes)
1: for i← 1 to n do
2: # extract features from reference images
3: Iref = random_sample(V )
4: Fref = Feat(Iref )
5: # memory update with merged feature set
6: Fmem = DAMM(FmemaFref )
7: end for
8: for It in V do
9: # extract features from current frame image

10: Fcur = Feat(It )
11: # enhance current feature with feature aggregation
12: F̂cur = FA(Fcur , Fmem)
13: # detect on enhanced current feature
14: Bt = Detect(F̂cur )
15: end for

B. DIVERSITY-AWARE MEMORY MANAGEMENT 237

We introduce a novel memory management method called 238

DAMM, which stores the maximum amount of information 239

with a minimum memory cost. Unlike previous methods, 240

our reading and writing protocols were unified into a single 241

operation. DAMM updates the contents of external memory 242

at each frame time to enhance global attention performance. 243

93456 VOLUME 10, 2022



S.-D. Roh, K.-S. Chung: DAFA: Diversity-Aware Feature Aggregation for Attention-Based Video Object Detection

Assume that Fmem is stored in external memory, and Fref is244

newly sampled. For feature selection, Fmem and Fref are first245

merged into U . We can then define the memory management246

problem by selecting the least redundant n samples from247

the candidates in U . However, finding the best set using an248

exhaustive search is an NP-hard problem. Therefore, we pro-249

pose a greedy algorithm that sequentially selects the optimal250

nonredundant feature from U .251

We refer to the Euclidean distance between two features252

x, y as rx,y. Although we cannot define an exact threshold253

for feature redundancy, we can determine that feature redun-254

dancy is inversely proportional to rx,y. To sequentially select255

a feature, we then define the diversity between a feature and a256

set of selected features. A diversity metric between a feature257

x ∈ U and feature set S can be calculated as258

dx,S = min
y∈S

rx,y. (2)259

At each selection iteration, DAMM selects a feature x with260

largest diversity, which can be defined as follows.261

argmax
x∈U

dx,S (3)262

Using this objective, DAMM selects a feature from U at263

each selection iteration and sequentially appends it to the264

set S. After n selection iterations, the completely selected265

set S is updated to the new Fmem. Our algorithm is similar266

to the farthest point sampling (FPS) algorithm, which is267

widely employed in the point cloud domain [30], [31]. See268

Algorithm 2 for additional details.269

C. FEATURE AGGREGATION MODULE270

After Fmem is attained by the DAMM algorithm, we update271

Fcur using a feature aggregation module. Fcur and Fmem are272

used as query setQ = {qi} and key-setK = {kj}, respectively.273

We used a feature aggregation mechanism similar to those274

found in [8], [9], [10], and [11], which were inspired by275

the multihead attention in [12]. However, we did not apply276

spatiotemporal positional encoding in the global attention277

stages because the time difference between qi and kj can be278

much longer than that incurred by previous methods. Our fea-279

ture aggregation module jointly attends to information from280

diverse perspectives using multiple heads. First, we multiply281

qi and kj by the linear transformation matrices WQ and WK ,282

respectively, to project them into the same vector space. Each283

embedding is then split intoM smaller features channel-wise284

to conduct M multihead attention. We can formulate each285

item of projected queries (qmi ) and keys (kmj ) as286

WQ · qi = concat[{qmi }
M
m ], (4)287

WK · kj = concat[{kmj }
M
m ], (5)288

where m denotes the mth attention head. The attention score289

and weight between a query and key are computed by290

s(qmi , kmj ) =
(kmj )

T (qmi )
√
d

, (6)291

wmij =
exp(s(qmi , kmj ))∑
j exp(s(q

m
i , kmj ))

, (7) 292

where d is the channel dimension of the split queries and keys. 293

We can then calculate the aggregation for the ith query as 294

agg(qi,K ) = WV · concat[{
∑
j

(wmij kj)}
M
m=1]. (8) 295

where concat denotes a channel-wise concatenation and WK 296

denotes a linear transformation matrix. Finally, the aug- 297

mented feature f is obtained as follows: 298

f (qi,K ) = qi + agg(qi,K ). (9) 299

In the case of multiple aggregation stages, a nonlinear 300

transformation composed of a fully-connected layer and a 301

ReLU activation function is inserted between each pair of 302

stages. 303

Algorithm 2 Diversity-Aware Memory Management
# m: number of features in U
# n: number of features in S
# D: m ∗ m Euclidean distance matrix
# ds: diversity between features in U and S
# sel: indices of selected features
Input: U (candidate features)
Output: S (selected features)
1: # compute distance matrix
2: D = compute_euclidean(U , U )
3: # initialize index array
4: sel = zeros(n)
5: # initially select a feature
6: ds = D[0,:]
7: for i← 1 to n do
8: # select a farthest one from selected features
9: idx = argmax(ds)

10: # save selected feature index
11: sel[i] = idx
12: # update diversity metric for updated S
13: ds = pointwise_min(ds, D[idx,:])
14: end for
15: S = U .index_select(sel)

D. ANALYSIS OF MEMORY MANAGEMENT POLICY 304

A video generally includes information regarding various 305

visual changes caused by rare poses, motion blurs, and 306

occlusions. However, most other information is redundant 307

because cameras capture similar scenes with small temporal 308

gaps. In the context of information entropy, the redundancy 309

removal function of DAMM is effective because it increases 310

entropy and makes memory more informative. In contrast, 311

most previous methods exhibit low entropy as a result of 312

redundant information. In extreme cases where most frames 313

visually overlap, because memory is updated by the FIFO 314

approach, object features are deleted without accounting for 315

priority. Consequently, relevant information that occurs early 316
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in the video is deleted, and most of the memory space is occu-317

pied by duplicate features. To avoid this, our method rejects318

low-diversity features, thereby maintaining the diversity of319

memory even under inputs with highly redundant features.320

Therefore, our method preserves overall feature information321

with a smaller memory capacity than existing methods.322

Also, DAMM’s diversity-based feature selection is robust323

against deteriorated objects without any algorithmic comple-324

mentation because DAMM takes objects suggested by RPN325

as input. RPN returns top-k objects in order of objectness326

score per image, and thus object candidates of DAMM are327

limited to features with high objectness scores.328

IV. EXPERIMENTS329

A. DATASETS AND EVALUATION330

We used the same settings as those in FGFA [17] to train331

our model. Because ImageNet VID does not have sufficient332

samples, we combined it with the ImageNet DET dataset.333

Of the 200 categories comprising the ImageNet DET dataset,334

we used 30 categories that overlap with the ImageNet VID335

dataset. We evaluated the proposed method using the Ima-336

geNet VID validation set, which consists of 3862 videos337

for training and 555 videos for validation. To compare the338

object detection performance of our method with that of339

existing methods, we report mean average precision (mAP)340

with threshold of IoU > 0.5.341

B. BACKBONE AND DETECTION NETWORK342

We employed ResNet-101 and ResNeXt-101 as the main343

backbone architectures. To increase the resolution of344

extracted features, we changed the stride of the first con-345

volution block in the conv5 stage from 2 to 1. We imple-346

mented a two-stage Faster-RCNN network, which has an347

RPN between the backbone and detection networks. The348

RPN head predicts objectness scores and box coordinates349

for 12 anchors (three aspect ratios of {1:2, 1:1, 2:1} and350

four scales of {642, 1282, 2562, 5122}) for each feature pixel.351

After the proposals were sorted by objectness scores, we used352

the top 300 proposals from the current frame and 75 from353

the reference frames for training and testing, respectively. For354

each proposal, a 7× 7 ROI-align and 1024-D fully-connected355

layer were used to extract object-level features.356

C. IMPLEMENTATION DETAILS OF DAFA357

There are two variants of our method: DAFA_G and358

DAFA_F. Whereas DAFA_G only exploits global attention,359

DAFA_F initially adds local attention stages to ensure more360

effective information collection. In the local attention stage,361

we applied a FIFO-type memory similar to that in RDN [11]362

or MEGA [8]. The size of the temporal window (Tl) was363

set to 25. Based on the objectness scores from each frame364

in the temporal window, 75 object features were selected as365

base features, and 15 were selected as advanced features. The366

local stage consists of three phases that gradually enhance367

the current features. In the first phase, the current frame368

features and advanced features are enhanced by the base 369

features using a feature aggregation module. In the second 370

phase, the current and advanced features are enhanced by the 371

advanced features. In the final phase, the current features are 372

enhanced by the advanced features. The Long RangeMemory 373

of MEGA, which was introduced to extend the visible frames 374

of local memory, is not used, as that range is covered by 375

global attention. Features from randomly shuffled images 376

are managed in global memory using DAMM. The global 377

attention stage further enhances the current features with 378

features in global memory. The enhanced current features are 379

then fed into the fully-connected layer to predict the classes 380

and bounding boxes. 381

D. TRAINING DETAILS 382

We initialized the backbone using the ImageNet pretrained 383

weights. In both training and testing stages, the input images 384

were resized to a shorter side of 600 pixels. We trained the 385

entire model on four RTX 3090 GPUs with the minibatch 386

size set to one per graphics card for a total batch size of 387

4. A single minibatch consisted of one current frame, four 388

global reference frames, and two local reference frames. The 389

global reference frames were randomly sampled from a video 390

with the same sequence as the current frame. Because each 391

reference frame had 75 object features, a total of 300 object 392

features were obtained. To mimic the managed global mem- 393

ory in the testing phase, we selected 50% of the global ref- 394

erence features using DAMM. Local reference frames were 395

randomly sampled from adjacent frames within the temporal 396

window. We trained our model using the SGD optimizer 397

with a learning rate of 0.001, momentum of 0.9, and weight 398

decay of 0.0001.We trained the entire architecture over 120K 399

iterations. We set the learning rate to 0.001 for the first 80K 400

iterations and decayed it to 0.0001 for the last 40K iterations. 401

The RPN and detection losses were only calculated for the 402

current frame. 403

E. MAIN RESULTS 404

1) ACCURACY COMPARISON 405

Table 2 compares the accuracy results of the proposedmethod 406

with those of existing state-of-the-art methods. To ensure 407

fairness, all methods were compared without applying any 408

postprocessing-based re-scoring techniques such as Seq- 409

NMS [32] or BLR [11]. All performance results are based 410

on mAP@50 (mean average precision with IoU > 0.5) unless 411

otherwise stated. Existing methods used for comparison 412

include motion-based methods, such as FGFA, MANET, 413

THP, and STSN, and attention-based methods, such as 414

OGEMN, SELSA, RDN, MEGA, and MAMBA. Under the 415

ResNet-101 backbone settings, our DAFA_F exhibited an 416

almost negligible performance difference (84.5%) compared 417

to MAMBA (84.6%), as summarized in Table 2. Our method 418

with only the global attention module (DAFA_G) achieved 419

83.5% mAP. Note that DAFA_G achieved higher accuracy 420

than MEGA, which utilizes both local and global attention. 421
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TABLE 2. Accuracy comparison of the video object detection methods for
the ResNet-101 (R101) and ResNeXt-101 (X101) backbones on the
ImageNetVID validation set.

TABLE 3. Comparison of the attention-based methods with the
ResNet-101 backbone and the FasterR-CNN detector. The runtime of all
compared methods were measured on an RTX3090 GPU.

Our key component, DAMM, computes diversity based on422

object features, thus preforming better with a more robust423

feature extractor. With a stronger ResNeXt-101 backbone,424

our full-featured DAFA_F achieved an 85.9% mAP, which425

is the highest accuracy among all competitors.426

2) SPEED-ACCURACY TRADE-OFF427

Table 3 presents a runtime comparison between our method428

and existing attention-based methods. We also show the429

number of iteration stages and reference features for a fair430

comparison. The number of reference frames is not dis-431

played because our method uses fine-grained object-level432

management. For a quantitative comparison, the number of433

reference features for each iteration stage was summed. For434

example, the total number of local reference features of435

DAFA_Fwas calculated as 25(Tl)∗(75(stage1)+15(stage2)+436

15(stage3)) = 2625. We set the number of proposals of437

RPN in SELSA to 300 and that in other methods to 75 to438

maintain consistent settings with those used in the original439

studies. SELSA and RDN are representative examples of440

methods that employ global and local attention, respectively.441

SELSA models a global relationship by randomly sampling442

images throughout a video, whereas RDN models the local443

TABLE 4. Comparision of vanilla attention module [12] and Feature
Aggregation module. The module comparison is conducted on DAFA_G
model.

TABLE 5. Net effects on the accuracy by adopting various combinations
of DAMM and the attention stages.

relationship around the current feature. MEGA models both 444

global and local relationships with a FIFO-type memory and 445

applies Long Range Memory to extend the range of visible 446

frames. As summarized in Table 3, DAFA_F outperformed 447

MEGA by 1.6% while using the same local and global 448

attention stages. Although the two algorithms feature the 449

same number of local and global attention stages, MEGA 450

uses Long Range Memory to improve coverage of the local 451

range. Consequently, the number of local reference features 452

is higher than that of DAFA_F, which incurs a higher com- 453

putational cost. This confirms that DAMM creates a robust 454

feature set even with smaller object features. Fig. 3 displays 455

a comparison of video object detection results for MEGA 456

and DAFA_F. It is apparent our detection results are robust 457

even without the use of Long Range Memory. DAFA_G, 458

which uses two-staged global attention, also produced 0.6% 459

higher performance than MEGA while achieving a runtime 460

of 54.9 ms, the lowest among all compared methods. 461

F. ABLATION STUDY 462

We conducted an extensive set of experiments to determine 463

the net effects of the key components of DAFA. 464

1) NET EFFECTS ON ATTENTION MODULE 465

Table 4 presents differences in accuracy and inference speed. 466

It is apparent that the feature aggregation module produces 467

0.4% higher performance than the vanilla transformer at a 468

slightly higher runtime (2.2 ms), which verifies that our 469

feature aggregation module enhances overall performance 470

with negligible cost. 471

2) NET EFFECTS ON ACCURACY ENHANCEMENT 472

Table 5 presents the net effect on accuracy under various 473

combinations of attention stages andDAMM.Model (a) is the 474

baseline model, which is a single-frame-based Faster-RCNN. 475

Model (b) features two global attention stageswith FIFO-type 476

memory. Model (c) includes three local attention stages and 477

one global attention stage. Model (d) has a global attention 478
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FIGURE 3. Visualized detection comparison between FasterRCNN [31], FGFA [17], MEGA [8], and DAFA_F on two videos in ImageNet VID dataset. The
first to fourth rows show the rare pose case, and the fifth to eighth rows show the motion blur case.

model with DAMM, which corresponds to DAFA_G. Model479

(e) is our full-featured DAFA_F model that employs both480

local and global attention. By default, we set the global481

memory size to 750 and the temporal window size to 25. 482

Note that Model (d) achieved 1.7% higher performance than 483

Model-(b), which implies that DAMM yields a significant 484
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TABLE 6. Effect of varying global attention stages of DAFA_G.

TABLE 7. Effect of varying the number of reference frames during
training.

improvement by creating an informative object feature set.485

Similarly, Model (e) achieved a 2.0% higher performance486

than Model (c). These results show that even when object487

features are enhanced from a wide range of local features, our488

global attention model with well-managed memory further489

improves performance by collecting diverse features from490

overall video frames.491

3) THE NUMBER OF ATTENTION STAGES492

We conducted comparison experiments on global attention493

stages Nstages_g. We experimented with our models by dis-494

abling local attention stages for a fair comparison. Each495

attention stage consists of our feature aggregation module496

with same number of heads (M = 16). Table 6 shows497

that performance grows until Nstages_g = 2 and degrades498

after. Because Nstages_g = 2 performs best with reasonable499

time consumption, we selected it as default for DAFA_G500

model.501

4) THE NUMBER OF REFERENCE FRAMES DURING TRAINING502

In this ablation study, we aimed to determine the effect of the503

number of global reference frames (Nref ) during the training504

phase. Intuitively, it is expected that an increase in Nref will505

improve the robustness of the global attention module by506

using more diverse reference features in the training phase.507

Note that Nref does not affect the inference speed. FIFO in508

Table 7 denotes a model that uses frame-level FIFO-type509

global memory, and Manage denotes a model that employs510

object-level management, as in DAMM. For a fair compar-511

ison, the number of global attention stages was fixed at 1,512

and the local attention module was eliminated. For both FIFO513

and Manage, mAP performance steadily increased with the514

increase in Nref . Therefore, the aggregation of a richer set of515

features in the training phase positively affects performance.516

We note that Manage performed better than FIFO by up to517

1.1%. This result strongly implies that DAMM increases the518

range of actually visible features in the test phase regardless519

of Nref by collecting diverse features. For an appropriate520

trade-off between performance and training time, we set Nref521

to 4, as in the other experiments in this study.522

TABLE 8. Effect of varying global memory size.

5) MEMORY SIZE IN TESTING 523

We conducted an experiment by varying the global mem- 524

ory capacity in the test phase (Nmem_g). In this experiment, 525

we used the DAFA_G model to exclude the effect of local 526

attention. Because the total amount of information within a 527

video is limited, no further improvement is expected when 528

the memory capacity is sufficient to store all the information 529

from the video. Table 8 presents the results of this experiment. 530

As expected, performance increased with memory size until 531

Nmem_g reached 1500, after which point performance slightly 532

decreased. This decrease in performancemay be caused by an 533

increase in the number of false positive samples, such as back- 534

grounds, in the key set. From this experiment, we found that 535

a global memory size of 750 achieves the optimal trade-off 536

between performance and runtime. 537

G. EVALUATION ON YOUTUBE OBJECTS DATASET 538

We further evaluated DAFA on the YouTube-Objects (YTO) 539

dataset [14] to test our model’s generalizability. The YTO 540

dataset contains 150 videos with a total of 720,000 frames 541

and 10 categories, which correspond to a subset of ImageNet 542

VID tasks. Each video contains several shots of consecutive 543

frames. Because only a few frameswere labeled for each shot, 544

6,087 frames were annotated with 6,975 bounding boxes. The 545

annotated frames were allocated into training and test sets, 546

with the latter consisting of 1781 annotated frames. To evalu- 547

ate DAFA’s performance on the test set, we reused the model 548

trained on the ImageNet DET and VID sets. No additional 549

fine-tuning was applied. Localization accuracy was measured 550

using CorLoc [36], an object localization metric calculated 551

by dividing the number of correctly localized images by the 552

number of ground truth images. Results are presented in 553

Table 9. Data from existing methods [33], [34], [35] were 554

retrieved from corresponding studies, and we reproduced 555

Faster-RCNN and MEGA [8] with the ResNet-101 backbone 556

for fair comparison. [33], [34], [35] boost performance with 557

strong post-processing, even though it uses a weak feature 558

extractor (HoG or GoogleNet). Note that T-CNN shows com- 559

parable performance with Faster-RCNN and MEGA. Our 560

method outperformed all existing methods by large margins 561

without additional post-processing. DAFA_G outperforms 562

MEGA by 0.6% and DAFA_F outperforms MEGA by 1.2%, 563

which are similar to the main results of Table 2. 564

H. QUALITATIVE ANALYSIS 565

1) FAILURE CASE ANALYSIS 566

We show some failure cases of DAFA in Fig 4. The first row 567

is an example of missing objects. This occurs when RPN 568
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FIGURE 4. Failure cases of DAFA on ImageNet VID validation dataset. Each row lists five frames in a video that contains
false negative (snake, motion blur) or false positive (antelope and zebra, occlusion) results.

TABLE 9. Localization performance evaluation on YouTube-Objects Dataset. CorLoc is used for evaluation metric.

FIGURE 5. Visualization of feature aggregation and external memory.

misses objects in significantly deteriorated images caused by569

motion blur. DAFA can not aggregate information when no570

candidate object exists in the current image, as in the second571

column image. Also, If a video is highly deteriorated, DAFA572

can collect and aggregate inaccurate information, leading to573

misclassifying objects (misclassifying a snake as a lizard in574

the first and third column in the first row). Images in the575

second and third rows show false positive cases in object576

occlusion situations. Because DAFA’s feature aggregation577

module cannot distinguish redundant ROIs (like multiple578

ROIs for a single object in two videos), they are not sup-579

pressed and can be generated as false-positive results. DAFA’s580

failure cases are usually caused by low performance of RPN.581

Thus, combining the pixel-level attention before RPN, such 582

as [9], [15], can be a possible solution to this problem. 583

2) VISUALIZATION OF FEATURE AGGREGATION AND 584

EXTERNAL MEMORY 585

Fig. 5 shows how external memory and feature aggregation 586

work for two video examples. The blue boxes in the figure 587

in the upper row show the ROIs of memory features in the 588

external memory, which has the top-2 highest attention scores 589

for each current feature. Feature aggregation enhances the 590

current features using memory features. The box in the lower 591

row of Fig. 5 shows the detection results of enhanced current 592

features. We observed that visually similar features, although 593

very far from the current features, tend to have high attention 594

scores, which shows that the proposed DAMM and feature 595

aggregation module work as intended. 596

V. CONCLUSION 597

In this paper, we present an effective attention-based video 598

object detection framework, DAFA. DAFA accounts for 599

diversity when collecting global information to perform video 600

object detection tasks. One of the key contributions of DAFA 601

is a novel memory management scheme called DAMM. 602

DAMM efficiently collects diverse features and alleviates 603

the imbalance of sampled features to construct an efficient 604

and robust key set. Experimental results show that DAFA_G 605

and DAFA_F achieve state-of-the-art performance on the 606
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challenging ImageNet VID and YouTube Objects dataset in607

terms of speed and accuracy.608
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