
Hardware-Efficient Activation Approximation based
on Error-Sensitivity Analysis for Deep Neural

Networks
Juhyuk Ahn, Kwangrae Kim, Chanhoon Kim, Soo-Min Rho, Ki-Seok Chung*

Department of Electronic Engineering
Hanyang University, Seoul, Korea

{juhuyk123, kksilver91, kch1103, smrho, kchung}@hanyang.ac.kr
*Corresponding author

Abstract—Implementing hardware units for non-linear activa-
tion functions is challenging due to their distinct characteristics.
While approximation methods offer a promising solution, conven-
tional approaches such as CORDIC and Chebyshev polynomials
suffer from high latency, and piecewise linear (PWL) methods
require large lookup tables (LUTs) to achieve acceptable accu-
racy. Furthermore, existing methods often overlook the varying
impact of approximation errors across input regions.

This paper proposes a hardware-efficient approximation
method based on symmetric PWL approximation with error
compensation guided by error-sensitivity analysis. A symmetry-
aware base function is first constructed using PWL approxima-
tion. Then, only the difference between this base function and the
target function is selectively compensated in high error-sensitivity
regions using a lightweight error compensation module. This
selective compensation enables accurate approximation across
various non-linear functions using significantly fewer LUTs.

Synthesized with Synopsys Design Compiler and UMC 28nm
libraries, the proposed design achieved over 90% LUT area
reduction per function compared to uniform PWL, with only
1.22%p average accuracy loss. Experimental results confirm that
the method delivers scalable and flexible activation function
computation for resource-constrained hardware.

Index Terms—Non-linear activation functions, Deep neural
networks, Piecewise linear approximation, Hardware acceleration

I. INTRODUCTION

With the emergence of artificial intelligence technology,
deep neural networks (DNNs) have achieved great success
in natural language processing, computer vision, etc. An
activation function that provides non-linearity to a DNN is
one of the keys to such success. With DNN architectures
becoming increasingly complex, a wide variety of activation
functions [1] have been proposed to address task-specific
challenges. However, implementing a diverse set of activation
functions in hardware is challenging, especially in resource-
limited hardware (e.g., edge devices or neural processing
units). Implementing hardware to compute multiple activation
functions will require different computational structures for
each function, resulting in increased hardware complexity and
area overhead.

To address this, researchers have explored approximation-
based methods. Conventional methods, such as CORDIC [2]
and Chebyshev polynomials [3], may share computational

TABLE I. Comparison of Activation Function Approximation Techniques

Approximation Method Area Latency Flex. Aware

Conventional Approaches

CORDIC Low Medium ✗ ✗
Chebyshev Polynomial Medium High ✓ ✗

LUT-based PWL Approaches

Non-uniform Segment High Low ✓ ✗
Uniform Segment High Low ✓ ✗
Symmetry Low Low ✗ ✗
Proposed Method Low Low ✓ ✓

Note: Area indicates the relative cost per function for comparable accuracy.
Flex. indicates support for multiple activation functions.

Aware indicates consideration of error-sensitivity for approximation.

units across functions to reduce the circuit area, but suffer
from high latency due to their iterative nature or high-degree
polynomial evaluations. Piecewise Linear (PWL) approxima-
tion enables low-latency computation by segmented linear
approximation. However, it requires either a large amount of
lookup tables (LUTs) in the case of uniform segmentation or
function-specific logic circuits in non-uniform segmentation.
Symmetry-aware PWL optimizations effectively reduce LUT
size by exploiting the symmetric property of certain activation
functions. However, these optimizations can be applied only
to functions that feature such symmetry. Furthermore, some
of the prior works [4], [5] achieved high accuracy but require
fine-tuning, which imposes additional design effort.

Further, most of these methods did not consider that ap-
proximation errors impact model accuracy unevenly across
different input ranges. In the proposed method, an error
compensation module is selectively activated only for input
ranges where approximation errors cause a significant drop in
model accuracy. To quantify this phenomenon, we define the
degree to which activation approximation errors impact model
accuracy as error-sensitivity. Table I demonstrates that meth-
ods without considering error-sensitivity result in inefficient
approximation. They suffer from high area overhead, increased
latency, or inability to support multiple activation functions
simultaneously.

In this paper, we propose a novel hardware-efficient ap-
proximation method for various activation functions, with



error compensation selectively applied to input intervals with
high error-sensitivity. To demonstrate our approach, suppose
we want to design hardware that approximates multiple non-
linear function variants (e.g., the GELU-like family shown in
Table II). We call such functions the target activation functions.
Our method claims that the function variants can be largely
approximated by the base functions such as GELU [6] or
Swish [7], and differences between them will occur only in a
small number of input intervals. Instead of approximating each
activation function individually, first, we approximate only the
base function via symmetric PWL, and apply error compen-
sation selectively to the input intervals where the differences
cause a significant drop in model accuracy. To identify these
critical input intervals, we propose an error-sensitivity analysis
method. To this end, we introduce a three-phase pipeline
structure as follows: (1) Analyze error-sensitivity via a method
called Activation Error Injection, (2) Quantify the model
accuracy degradation caused by replacing the target activation
with the base function and evaluate the functional difference
between them, and (3) Apply error compensation methods to
the common compensation region with high error-sensitivity.
Our proposed hardware architecture offers scalable and low-
overhead support for a diverse set of activation functions.
When synthesized using Synopsys Design Compiler with
UMC 28nm target libraries, the design achieves an impressive
90% reduction in the LUT usage per function compared to
the design for uniformly segmented PWL, while maintaining
a minimal average accuracy degradation of only 1.22%p when
approximating 16 GELU-like activation functions.

II. RELATED WORKS & MOTIVATION

A. LUT-Based Approximation Methods
Piecewise-linear (PWL) approximation via look-up tables

(LUTs) is widely adopted due to its implementation efficiency.
PWL algorithms approximate a nonlinear function by dividing
the input space into intervals and fitting linear segments based
on precomputed parameters. There are two main segmentation
strategies.

• Uniform segmentation: The input range is split into
equally sized segments, which simplifies control logic.
However, maintaining high approximation accuracy often
requires many segments, leading to a large number of
LUTs.

• Non-uniform segmentation: Finer segments are granted
in areas of high curvature for higher resolution. However,
the control logic becomes more complex due to the non-
uniform segmentation.

Exploiting Functional Symmetry: To achieve a good trade-
off between implementation simplicity and the required LUT
size in PWL, functional symmetry may be exploited with
uniform segmentation methods. Functions such as Swish and
GELU are inherently symmetrical, satisfying the property
f(x) = x+f(−x), which implies that the LUT needs to store
the parameters only for the positive input range. The output
for the negative input is then derived by mirroring, effectively
reducing the LUT size by half.

B. Motivation: Limitations and Observation

Various approximation methods have been proposed to find
good trade-offs among accuracy, area, latency, and flexibility.
However, most existing methods have largely overlooked
the impact of error-sensitivity on model accuracy, which is
not uniform across input ranges. Therefore, analyzing error-
sensitivity helps to identify critical input regions for error
compensation, enabling more efficient and accurate approx-
imations.

Moreover, activation functions such as GELU, Swish, and
their variants have similar shapes, and their differences are
concentrated in a small number of input intervals. This allows
error compensation to be selectively applied only where it is
most needed, as effectively identified by the proposed error-
sensitivity analysis.

These insights motivate our design, using a symmetry-
aware base function (e.g., GELU or Swish) implemented
with compact hardware combined with a lightweight error
compensation module for high flexibility and low overhead
in approximating diverse activation functions.

III. ACTIVATION FUNCTION APPROXIMATION BASED ON
ERROR-SENSITIVITY

The key problem to solve is to identify a common com-
pensation region where the error compensation should be
applied across multiple activation functions, and the proposed
method consists of three phases as follows: (1) Analyze error-
sensitivity via a method called Activation Error Injection, (2)
Quantify the accuracy drop from replacing the target activation
with the base function and the functional difference between
them, and (3) Identify the common compensation region for
error compensation by error-sensitivity analysis. The three
phases are shown in Fig. 1, and they are executed in a pipelined
fashion.

A. Phase 1: Error-Sensitivity Analysis

Model Selection Based on Error-Sensitivity: To estimate the
error-sensitivity, we inject errors into the activation outputs
during inference. We call this step Activation Error Injection.
In Fig. 2a, the x-axis represents the magnitude of the injected
error, while the y-axis shows the corresponding accuracy loss.
A large accuracy drop (i.e., a more negative y-value) when the
x-value is close to zero indicates that the model is highly sensi-
tive to small errors, reflecting high error-sensitivity. Among the
models that we evaluated, ViT-Small [8] on CIFAR-100
[9] exhibited the highest error-sensitivity. Accordingly, this
model was selected as the test case and was used in all
subsequent experiments.
Interval-Level Sensitivity Profiling: To analyze the error-
sensitivity of GELU-like activation functions, we also applied
Activation Error Injection by uniformly dividing the input
interval [−10, 10] and injecting errors of various magnitudes
into their outputs. Fig. 2b presents the results for colu [10],
one of GELU-like functions. The orange line indicates the
baseline accuracy, and a bigger deviation from the baseline
indicates a larger degradation. With the largest error magnitude



Fig. 1. Overview of the three-phase compensation region identification methodology.

(a) Error-Sensitivity across various models.

(b) Accuracy degradation from interval-wise Activation Error Injection
over in colu, one of GELU-family.

Fig. 2. Impact of activation errors on model evaluation accuracy.

of 0.2, the accuracy degradation occurs mainly at the inter-
val [−4.75, 0.75]. Moreover, some sub-intervals within this
interval exhibit a significantly larger impact on accuracy. This
tendency is similarly observed for all GELU-like functions,
and the interval [−3, 1] is identified as the critical input interval
with the most significant impact on accuracy.
Key Observation: According to the error-sensitivity via Ac-
tivation Error Injection, the model accuracy depends on both
the magnitude of the error and the input intervals. Therefore,
error compensation efforts should be applied to the intervals
with high error-sensitivity, where even small errors result in
significant accuracy degradation.

B. Phase 2: Estimating the Impact of Activation Replacement

Based on the observation from Phase 1, compensation
should be applied to high error-sensitive intervals. This im-

plies that the target function can be approximated by the
base function approximation for input ranges with low error-
sensitivity, and we need to focus only on the input range
with high error-sensitivity for difference compensation. To
identify these high error-sensitive regions, it is necessary to
measure the error magnitude and the corresponding accuracy
drop when replacing the target GELU-like functions with the
base function.
Difference Estimation Between Base & Target Functions:
When the base functions are used instead of other GELU-
like functions, the differences due to the replacement must
be appropriately compensated. Such errors can be easily
calculated as the difference between the two functions, as
illustrated in Fig. 3a. The yellow region indicates the error-
sensitive interval of colu identified in Phase 1. Since intervals
outside this area have minor effects on accuracy, compensation
is not essential.
Measure Accuracy Drop from Base Function Substitution:
We measured the accuracy degradation of the error-sensitive
model when each GELU-like activation function was replaced
with the base functions (GELU, Swish). The results are
presented in Table II. This accuracy degradation arises from
the approximation errors previously identified in the error
calculation step.

C. Phase 3: Compensation Region Selection

Within the identified range [−3, 1] in Phase 2, we perform
a hierarchical greedy search to determine the interval where
the compensation will be commonly beneficial for the GELU-
like family. We call this interval common compensation re-
gion. This searching method recursively explores candidate
intervals, progressively refining the search granularity by a
factor of 1/10 at each of the four hierarchical levels, enabling
increasingly detailed examination.

At each level, the search focuses on the region with the
highest Spearman correlation [11] value, which then becomes
the candidate for a finer-grained search and the correlation
evaluation in the subsequent level. The correlation values
are computed separately based on three criteria: GELU-only,
Swish-only, and their average. Finally, among these candi-



(a) Approximation error between GELU
and colu.

(b) Comparison of original and compen-
sated colu based on GELU.

Fig. 3. Visualization of approximation errors for colu.

TABLE II. Accuracy drop when replacing original activation with GELU or
Swish.

Original Function
Accuracy Drop

When Replacing With:

GELU Swish

hard swish 0.083 0.117
loglogish 0.076 0.029
colu 0.047 0.338
eanaf 0.054 0.830
modified silu 0.096 0.062
expexpish 0.065 0.866
mish 0.075 0.020
hardelish 0.041 0.350
elish 0.034 0.691
serf 0.072 0.058
suish 0.069 0.101
rectified exponential unit 0.069 0.104
tanhexp 0.072 0.075
lalu 0.037 0.253

dates, the one selected based on the criterion that achieves the
highest accuracy is chosen. The detailed results are presented
in Section V-A. The orange region in Fig. 3b represents the
final selected common compensation region. In this selected
common compensation region, error compensation is applied
using a simple linear operation, with the parameters chosen to
minimize the mean absolute error (MAE) with respect to the
original function. It can be observed that the error near −2,
which was identified in Fig. 2b as the most error-sensitive
region, is significantly reduced, effectively avoiding model
accuracy degradation.

IV. HARDWARE DESIGN

We implement the compensation module based on error-
sensitivity analysis as introduced in Section III. The design
consists of a symmetry-aware uniform PWL approximation
unit for the base function and a lightweight error compensation
module, as shown in Fig. 4. This allows efficient support
for multiple activation functions while minimizing hardware
overhead. Symmetry-aware LUT module approximates a
base function (e.g., GELU or Swish) using a compact LUT and
symmetry-aware logic. An address generator detects whether
the input falls within the predefined compensation region.

Fig. 4. Proposed design with an error compensation module.

Fig. 5. Comparison of area scaling.

Error-compensation module is triggered when compensation
is needed; it retrieves precomputed parameters from a small
LUT and applies a corresponding linear correction term. Acti-
vation output is computed as a simple sum of the outputs from
the symmetry-aware LUT module and the error-compensation
module.

V. EVALUATION

We evaluated the proposed design in terms of: (1) accuracy
preservation with error compensation, (2) hardware efficiency,
and (3) scalability for multi-function support.

A. Accuracy Evaluation

The accuracy evaluation was conducted by fine-tuning
each GELU-like activation on the ViT-Small model with the
CIFAR-100 dataset, as specified in Section III-B. A total
of 16 functions were considered, including the 14 GELU-
like variants in Table II and the two base functions, GELU
and Swish. The function that achieves higher model accuracy
was selected as the base function for each GELU-like func-
tion. We applied three correlation strategies—Swish-based,
GELU-based, and the average correlation—as described in
Section III-C. Each strategy was evaluated using different LUT
sizes of 8, 16, and 32 segments. Table III shows that, as
the number of LUT segments increases, the average accuracy
drop decreases. However, it does not significantly improve



TABLE III. Comparison of Accuracy Drop for various LUT Sizes and Correlation Strategies.

Base LUT = 8 segments Base LUT = 16 segments Base LUT = 32 segments

Metric / Strategy Swish
Corr.

GELU
Corr.

Average
Corr.

Swish
Corr.

GELU
Corr.

Average
Corr.

Swish
Corr.

GELU
Corr.

Average
Corr.

Avg. Acc. Drop 0.0122 0.0139 0.0152 0.0121 0.0151 0.0173 0.0113 0.0155 0.0174
Max. Acc. Drop 0.0297 0.0575 0.0466 0.0347 0.0565 0.0446 0.0297 0.0515 0.0446

TABLE IV. Comparison of Area, Power, and Latency (UMC 28nm, 800 MHz,
FP32 precision)

Method Area (µm2) Power (mW) Latency (cycles) Supported

CORDIC 8845.1 2.40 9 GELU
Chebyshev 5539.5 3.99 10 GELU
Proposed 10 798.6 3.83 1 GELU, colu

the maximum accuracy degradation. Moreover, the benefit in
average accuracy is relatively small compared to the cost of
doubling the LUT size, which is one of the key drawbacks
of PWL approaches. With regard to the compensation region
strategies, the Swish-based correlation consistently yields the
lowest accuracy drop across all LUT sizes. The best result
is achieved with a LUT size of 32 and the Swish-based
compensation, showing an average accuracy drop of 0.0113
and a maximum drop of 0.0297. However, using the same
strategy with only 8 segments still maintains competitive
accuracy (average: 0.0122, max: 0.0297), making it the most
hardware-efficient option by consuming only one-fourth of the
LUT resources.

B. Hardware Evaluation

We synthesized three designs: CORDIC for GELU, Cheby-
shev for GELU, and our proposed design for both GELU and
colu, using Synopsys Design Compiler with the UMC 28nm
target libraries. All designs operate at 800MHz. All compu-
tations are carried out with 32-bit floating-point (FP32) num-
bers. Their characteristics are summarized in Table IV. The
CORDIC design exhibits low power consumption (2.40mW).
However, its iterative processing results in a high latency of 9
cycles for GELU, leading to a significant energy consumption.
The circuit area occupies 8845.1 µm2. The Chebyshev design
takes up a small area with 5539.5 µm2 mainly because it
operates iteratively. Despite its compact size, its scalability is
limited by the need for different parameters for each function.
It consumes 3.99mW of power, with a notably high energy
consumption due to the 10-cycle latency required for GELU
computation. In contrast, the proposed design supports two
functions (GELU and COLU) with a total area of 10798.6
µm2, and achieves the best area efficiency per function. Its
power consumption is 3.83mW, and all the functions are
completed in a single cycle, which means that the energy
consumption is significantly smaller. These benefits stem from
the lightweight compensation module. The area efficiency
is expected to further improve with the addition of more
supported functions, as detailed discussion in Section V-C.

C. Scalability

Fig. 5 illustrates the scalability of each method in terms of
the circuit area as the number of target activation functions in-

creases. The baseline uniform PWL method incurs significant
LUT overhead for each added activation function, whereas the
proposed method requires only a small compensation LUT.
Specifically, the proposed design takes up substantially less
area than the baseline, occupying only 180 µm2 per function
compared to 2800 µm2 for the baseline. For each additional
function, more than 90% of the LUT area can be saved. This
scalability is very important for effective implementation on
resource-constrained hardware that needs to support multiple
activation functions.

VI. CONCLUSION

This paper proposed a hardware design that combines a
module for symmetric PWL approximation with that for
selective error compensation, enabling efficient multi-function
activation approximations. It achieves minimal accuracy loss
of only 1.22%p while reducing LUT usage by over 90%. This
enables scalable and hardware-efficient deployment of deep
neural networks on resource-constrained hardware platforms.

ACKNOWLEDGMENT

This work was supported by the National Research Foun-
dation of Korea (NRF) grant funded by the Korea government
(MSIT) (RS-2024-00409492).

REFERENCES

[1] V. Kunc and J. Kléma, “Three decades of activations: A comprehensive
survey of 400 activation functions for neural networks,” arXiv preprint
arXiv:2402.09092, 2024.

[2] J. E. Volder, “The cordic trigonometric computing technique,” IRE
Transactions on electronic computers, no. 3, pp. 330–334, 1959.

[3] J. C. Mason and D. C. Handscomb, Chebyshev Polynomials. CRC
press, 2002.

[4] J. Yu, J. Park, S. Park, M. Kim, S. Lee, D. H. Lee, and J. Choi, “Nn-lut:
Neural approximation of non-linear operations for efficient transformer
inference,” in Proceedings of the 59th ACM/IEEE Design Automation
Conference, 2022, pp. 577–582.

[5] H. Lu, Q. Mei, and K. Wang, “Auto-lut: Auto approximation of non-
linear operations for neural networks on fpga,” in 2023 IEEE Interna-
tional Symposium on Circuits and Systems (ISCAS). IEEE, 2023, pp.
1–5.

[6] D. Hendrycks and K. Gimpel, “Gaussian error linear units (gelus),” arXiv
preprint arXiv:1606.08415, 2016.

[7] S. Elfwing, E. Uchibe, and K. Doya, “Sigmoid-weighted linear units
for neural network function approximation in reinforcement learning,”
Neural networks, vol. 107, pp. 3–11, 2018.

[8] A. Dosovitskiy, “An image is worth 16x16 words: Transformers for
image recognition at scale,” arXiv preprint arXiv:2010.11929, 2020.

[9] A. Krizhevsky and G. Hinton, “Learning multiple layers of features from
tiny images,” University of Toronto, Tech. Rep., 2009.

[10] A. Vagerwal, “Deeper learning with colu activation,” arXiv preprint
arXiv:2112.12078, 2021.

[11] C. Spearman, “The proof and measurement of association between two
things,” The American Journal of Psychology, vol. 15, no. 1, pp. 72–101,
1904.


	Introduction
	Related Works & Motivation
	LUT-Based Approximation Methods
	Motivation: Limitations and Observation

	Activation Function Approximation based on Error-Sensitivity
	Phase 1: Error-Sensitivity Analysis
	Phase 2: Estimating the Impact of Activation Replacement
	Phase 3: Compensation Region Selection

	Hardware Design
	Evaluation
	Accuracy Evaluation
	Hardware Evaluation
	Scalability

	Conclusion
	References

