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HPN-SpGEMM: Hybrid PIM-NMP for SpGEMM
Kwangrae Kim and Ki-Seok Chung

Abstract—Sparse matrix-matrix multiplication (SpGEMM) is
widely used in various scientific computing applications. However,
the performance of SpGEMM is typically bound by memory
performance due to irregular access patterns. Prior accelerators
leveraging high-bandwidth memory (HBM) with optimized data
flows still face limitations in handling sparse matrices with
varying sizes and sparsity levels. We propose HPN-SpGEMM,
a hybrid architecture that employs both processing-in-memory
(PIM) cores inside bank groups and near-memory-processing
(NMP) cores in the logic die of an HBM memory. To the
best of our knowledge, this is the first hybrid architecture
for SpGEMM that leverages both PIM cores and NMP cores.
Evaluation results demonstrate significant performance gains,
effectively overcoming memory-bound constraints.

Index Terms—SpGEMM, Processing-in-Memory, Near-
Memory-Processing, HBM.

I. INTRODUCTION

Sparse matrix-matrix multiplication (SpGEMM) is a key
kernel widely used in various scientific domains [9]. How-
ever, the performance of SpGEMM is typically limited by
memory performance due to its irregular access patterns.
Previous accelerators have attempted to address these lim-
itations through various hardware optimizations leveraging
high-bandwidth memory (HBM). They have adopted different
SpGEMM data flows, such as inner-product, outer-product, or
row-by-row approaches, and accelerators were designed in
a way to optimize for those specific data flows to enhance
performance [1]. However, they often failed to accelerate
SpGEMM with various dimensions and sparsity levels. As
observed in the roofline analysis in Fig. 1a, GAMMA [1], a
widely known accelerator employing a row-by-row approach,
shows memory-bound characteristics. This is primarily due to
the many memory commands required to carry out irregular
accesses for input matrices and intermediate partial sums.
These observations strongly motivate the need to develop a
novel HBM-based processing-in-memory (HBM-PIM) archi-
tecture to accelerate SpGEMM.

In this letter, we propose a novel hybrid HBM-based ar-
chitecture called HPN-SpGEMM. The architecture integrates
bank group (BG)-level PIM cores on the DRAM dies and
pseudo-channel (pCH)-level near-memory processing (NMP)
cores on the logic die. It accelerates SpGEMM by parallelizing
the partial sum generation in the BG-PIM cores and the
result aggregation in the pCH-NMP cores. To further enhance
this parallel execution, the data flow is designed so that the
memory command data paths for BG-PIM do not conflict with
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Fig. 1: a) Roofline analysis of GAMMA [1], b) Performance
comparison between Bank-level PIM+NMP and BG-level
PIM+NMP. All evaluations are conducted on matrices listed
in Table I.

those for the pCH-NMP cores. Additionally, we propose an
optimized input matrix mapping strategy for effective load
balancing.

II. DESIGN MOTIVATION

1. Hybrid PIM-NMP Architecture for SpGEMM: While
conventional PIM architectures often adopt bank-level PIM
to exploit high parallelism [10], [13], this approach is not
suitable for SpGEMM because aggregating partial sums must
be frequently conducted, which incurs significant communica-
tion complexity and control overhead [11]. To overcome this
limitation, we propose a hybrid PIM-NMP architecture that
distributes the processing loads across two hierarchy levels: 1)
On the logic die, pCH-level NMP cores aggregate partial sums
across multiple pseudo-channels (pCHs) via TSVs, and 2) On
the DRAM die, PIM cores generate partial sums utilizing high
internal bandwidth. However, assigning PIM units to lower
hierarchy levels (e.g., bank-level) introduces a trade-off. As
the granularity becomes finer, the size of submatrices allocated
to each unit decreases, making load balancing more difficult.
This issue becomes even more pronounced in SpGEMM,
which exhibits irregular memory access patterns. As shown in
Fig. 2b, bank-level PIM suffers from performance degradation
due to load imbalance, achieving only 59% of the performance
of BG-level PIM + NMP on average. Based on this result, we
adopt a hybrid structure that combines pCH-level NMP with
BG-level PIM, which is a higher hierarchy than bank-level, to
process SpGEMM workloads efficiently.
2. Row-by-Row Method for SpGEMM: The row-by-row
method of SpGEMM computes the output row C[i, ∗] by
iterating over the nonzero elements aik in the input row Ai,
multiplying each aik with the corresponding row B[k, ∗],0000-0000 © 2024 IEEE
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Fig. 2: Overview of HPN-SpGEMM where the number of pseudo channels (pCHs) is two and the number of bank groups (BG)
is four: a) Overall architecture with key modules, b) Operations in each hardware unit, illustrating the process of generating
partial sums and merging them for each row of A, c) Description of input matrices.

and summing the results (i.e., C[i, ∗] =
∑N

k=0 A[i, k] ×
B[k, ∗]). Compared to the other methods, the row-by-row
method achieves a better trade-off between reuse efficiency
and computational complexity [1]. Therefore, we adopt this
row-by-row method, modifying the method to fit our proposed
architecture.

III. HPN-SPGEMM

A. Overview of HPN-SpGEMM

Fig. 2 illustrates the overall architecture with the key
modules and their operations of the HPN-SpGEMM for
SpGEMM (A × B = C). Both input matrices, A and B,
are stored in the compressed sparse row (CSR) format [8],
and the result matrix C is also generated in the same format.
Leveraging the hierarchical structure of HBM (pCHs and
BGs), HPN-SpGEMM implements BG-level PIM cores inside
each pCH die and pCH-level NMP cores on the logic die.
Since elements of A are accessed sequentially and needed for
generating all partial sums on a row-by-row basis (Fig. 2b), it
must be simultaneously provided to all BG-PIM cores. Thus,
A is dynamically broadcast during the computation by the
Broadcast A module in the logic die. In contrast, B is pre-
distributed across pCHs with a specific mapping method so
that BG-PIM cores can access B submatrices locally. The BG-
PIM cores generate partial sums by merging and multiplying
broadcasted A with the distributed B submatrices. The pCH-
NMP cores then aggregate the partial sums from each BG-PIM
core to generate the final C.

B. Hardware architecture

Hardware configuration on the logic die (Fig. 3a, Fig. 3b):
The pCH-NMP core and the Broadcast A module exploit pCH-
level parallelism (with #pCH data paths) to issue memory
commands for generating partial sums and broadcasting A,
respectively (Fig. 3b). These commands are then scheduled by
the Central memory request arbiter module before being sent
to DRAM. The addition processing element (APE) scheduler
in the pCH-NMP core continuously polls the multiplication
processing element (MPE) scheduler on the BG-PIM core to
track which partial sums have been generated from the BG-
PIM cores. The APE scheduler assigns accumulation tasks to

Fig. 3: Description of HPN-SpGEMM’s detailed internal ar-
chitecture: a) APE (example with #pCH = 2), b) Logic die of
HPN-SpGEMM, c) MPE (example with #BG = 2, capable of
merging two A rows), d) pCH die of HPN-SpGEMM.

APEs based on the tracked data. APEs accumulate the received
partial sums in parallel to generate the final C matrix and
store the final result in DRAM. Fig. 3a depicts the process
in which the APE receives partial sums from each pCH,
utilizing pCH-level parallelism, and generates the final product
C ({c0,9, c0,15}+{c0,5, c0,9}⇒{c0,5, c0,9, c0,15}). The radix of
the APE’s merger is equal to the number of pCHs (#pCH). The
memory commands issued within the NMP core (broadcast,
polling, partial sum read/write) are scheduled sequentially by
a finite state machine (FSM) we design to avoid internal data
traffic contention.
Hardware configuration on the pCH die (Fig. 3c, Fig. 3d):
The MPE scheduler assigns tasks to each MPE based on the
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Fig. 4: Execution flow of HPN-SpGEMM (example with two
APEs and two MPEs per module, #pCH = 2)

broadcasted A. Each MPE executes partial sum generation
(Partial Sum Gen) through the following process: 1) fetching
the corresponding rows of the B’s submatrix in BG-level
parallel; 2) performing multiplication & merge operations with
broadcasted A; and 3) writing the computed partial sums
to the non-blocking buffer. Fig. 3c illustrates the process in
which an MPE fetches the corresponding rows of B and
generates a partial sum (a0,3 · {b3,0, b3,9, b3,10, b3,15} + a0,1 ·
{b1,0, b1,8, b1,9, b1,15} ⇒ {c0,0, c0,8, c0,9, c0,10, c0,15}). In case
the number of rows in A exceeds the radix of the MPE merger,
the MPE writes the intermediate partial sum to a cache called
FiberCache [1] and later reads it back to perform the remaining
merge operation, completing the partial sum generation.

A key design challenge in the BG-PIM core is ensuring that
the memory command paths of the logic die and the BG-PIM
core do not overlap. Overlapping paths may cause frequent
memory access conflicts, hindering the parallel execution of
the partial sum generation and the final C generation. To
avoid this issue, the proposed architecture partitions on-chip
storage into FiberCache and a non-blocking buffer. FiberCache
—adopted from GAMMA [1]— efficiently manages the in-
termediate partial sums and non-zero elements and provides
quick access for multiple processing elements (PEs). The non-
blocking buffer stores partial sums that exhibit no temporal
locality, so memory access can continue without stalls even
when a cache miss occurs. As shown in Fig. 3d, both storage
components connect through crossbars to effectively isolate
the memory commands issued from the BG-PIM core (❶, and
❷) from those issued by the Broadcast A module and the pCH-
NMP core (❸, ❹, ❺, and ❻). Due to the scheduling of the
pCH-NMP core, command conflicts ❷ and ❸ do not occur.

Fig. 4 illustrates the execution flow of the units on the logic
die and the pCH die, demonstrating how the broadcast of A,
BG-level partial sum generation on the pCH die, and final
computation of C on the logic die are performed concurrently.

C. Mapping Strategy for SpGEMM

In the row-by-row SpGEMM method, non-zero elements in
matrix A are accessed sequentially, so matrix A is mapped
across multiple pCHs following the conventional HBM phys-
ical mapping scheme. In contrast, matrix B exhibits irregular
access patterns, and thus, the strategy for distributing B
across multiple pCHs significantly affects load balance and
the overall performance. To address this issue, an alternating

Fig. 5: Description of mapping method

row-wise mapping scheme may be considered. This approach
distributes rows evenly across pCHs in a round-robin manner
and simplifies row index reconstruction (Fig. 5a). However,
if non-zero elements are unevenly distributed across rows,
load imbalance may still arise. This issue is particularly
exacerbated when the coefficient of variation (CV, standard
deviation divided by mean) of non-zero counts per row is
high (e.g., CV ≥ 2), which indicates significant row-wise
load imbalance. To mitigate this, we propose a mixed parti-
tioning approach (Fig. 5c) that partially incorporates column-
wise partitioning into the row-wise scheme, aiming to further
distribute non-zero elements more evenly at the row level.
While this strategy introduces slight overhead in row pointer
management, the impact is negligible relative to the overall
matrix size. In our implementation, we apply the mixed
strategy with an 8:2 ratio — performing eight alternating row-
wise partitions followed by two column-wise partitions - to
match the 16 pCH architecture.

IV. EVALUATION

Experimental Setup: We evaluate the performance of HPN-
SpGEMM and GAMMA [1], a representative SpGEMM
accelerator, using Ramulator [5] with a common memory
configuration of 128 GB/s HBM [6] featuring 16 pCHs per
DRAM die (each with 16 banks and 4 BGs). GAMMA is
configured with 48 32-radix PEs and a 1.5 MB FiberCache
with 48 cache banks. For HPN-SpGEMM, a total of 32 32-
radix MPEs are deployed across all 16 pCH dies (with 2 MPEs
per pCH die), where each 32-radix MPE receives input through
a 4-radix merger leveraging BG-level parallelism. The logic
die is equipped with 16 16-radix APEs. A total of 0.75 MB of
FiberCache and 0.75 MB of non-blocking buffer are allocated
evenly across all 16 pCH dies, so each pCH die has a 46.875
KB FiberCache and a 46.875 KB non-blocking buffer. The
FiberCache in each pCH die is structured with 8 cache banks
to support BG-level access for the 2 MPEs. All designs operate
with a system clock of 1 GHz. We also compare SpGEMM
performance with Intel MKL’s mkl sparse spmm [7] on a

TABLE I: Sparse matrices from SuiteSparse [2] for evaluation
Benchmark Dimensions Sparsity Benchmark Dimensions Sparsity

p2p-Gnutella31 (P2) 62,586 3.8E-05 amazon-2008 (AM) 735,323 9.5E-06
roadNet-TX (RO) 1,393,383 2.0E-06 stomach (ST) 213,360 6.6E-05

wiki-talk-temporal (WI) 1,140,149 2.5E-06 bcsstk32 (BC) 44,610 1.0E-03

webbase-1M (WE) 1,000,005 3.1E-06 vsp bcsstk30 500sep
10in 1Kout (VS) 58,348 1.2E-03

m t1 (MT) 97,578 1.0E-03 Ge99H100 (GE) 112,985 6.6E-04
web-Google (WEB) 916,428 6.1E-06 x104 (X1) 108,384 7.4E-04

mario002 (MA) 389,874 1.4E-05 vsp msc10848 300sep
100in 1K (VSM) 21,996 5.1E-03

mac econ fwd500 (MAC) 206,500 3.0E-05 ship 001 (SH) 34,920 3.2E-03
soc-Slashdot0811 (SO) 77,360 1.5E-04 email-Enron (EM) 36,692 2.7E-04
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Fig. 6: Performance evaluation results: a) Speedup comparison
of GAMMA and HPN-SpGEMM over MKL (left Y-axis) and
the relative speedup of HPN-SpGEMM over GAMMA (right
Y-axis), b) Performance comparison based on the mapping
method for HPN-SpGEMM.

server with an Intel Core i9-10900X and 8 DDR4-2666. GPU
results are not included as the SpGEMM execution on the
GPU showed similar performance to MKL [1]. We use sparse
matrices from SuiteSparse [2] to evaluate the performance
(Table I). The matrices are stored in the CSR format [8], with
values represented as double-precision floating points (8B) and
row pointers as 4B integers.
Performance Analysis: Fig. 6a presents the performance
comparison of GAMMA and HPN-SpGEMM relative to
MKL. HPN-SpGEMM achieves an average speedup of 48.73×
(up to 154.99×) over MKL. Compared to GAMMA, HPN-
SpGEMM demonstrates an average speedup of 2.22× (up
to 5.65×). For the WE matrix, GAMMA slightly outper-
forms HPN-SpGEMM due to high cache locality (hit rate:
0.86). However, for matrices such as VS, GE, and VSM,
GAMMA exhibits low cache utilization (0.05, 0.12, and
0.04 hit rates), resulting in considerably lower performance
(achieving speedups of only 1.53×, 9.18×, and 10.52× over
MKL). In contrast, HPN-SpGEMM demonstrates significantly
higher performance, achieving speedups of 7.64×, 40.41×,
and 59.47× over MKL for VS, GE, and VSM. This per-
formance gain is attributed to the proposed architecture and
operation flow of HPN-SpGEMM, which effectively mitigates
memory-bound issues by efficiently utilizing internal memory
bandwidth.
Mapping Method Analysis: Fig. 6b compares the perfor-
mance of the 8:2 mixed partitioning scheme and the 16:1
row-wise partitioning scheme, with a focus on matrices whose
coefficient of variation (CV) of non-zero elements per row
exceeds 2. For matrices with low CV (ranging from 0.03 to
1.26) that are not shown in Fig. 6b, both partitioning schemes
yield comparable performance, with differences ranging from
0.9× to 1.07×. In the case of the ST matrix, the 8:2 scheme
shows a 27% performance drop compared to 16:1; however,
it still achieves a 1.41× improvement over the GAMMA base-
line, demonstrating the robustness of the proposed method.
On the other hand, matrices with high CVs—WI (CV: 58.10),
WE (CV: 8.16), SO (CV: 3.15), and EM (CV: 3.60)—exhibit

highly uneven distributions of non-zero elements across rows.
In such cases, the proposed 8:2 mixed mapping scheme
outperforms the 16:1 scheme by 1.41×, 2.43×, 1.37×, and
1.47×, respectively. Although the 8:2 scheme introduces a
slight storage overhead due to additional row pointers (ranging
from 1.002× to 1.096×), this overhead is negligible.
Design Overhead: APEs and MPEs were implemented in
Verilog HDL and synthesized using the 28 nm Nangate Open-
Cell library with Synopsys Design Compiler. Both designs
operate at 1GHz. To reflect realistic fabrication, the units
in the logic die were scaled to a 20 nm CMOS process,
where 16 APEs occupy 1.22 mm², corresponding to 1.43%
of the total logic die area (85.4 mm²). For the units in the
pCH die, we applied 20 nm scaling followed by a 10×
area increase to account for DRAM-specific constraints such
as lower logic density [12]. The FiberCache and the non-
blocking buffer were modeled using CACTI [3], and the
crossbar was modeled based on [4]. The total area of the pCH
components —FiberCache, non-blocking buffer, crossbar, and
MPE— occupies 5.10 mm², which corresponds to 12.1% of
the pCH die area (42.15 mm²).

V. CONCLUSION

HPN-SpGEMM efficiently accelerates SpGEMM by integrat-
ing BG-level PIM and pCH-level NMP. Its architecture mit-
igates memory-bound constraints through efficient data map-
ping and execution flow. Evaluation results show significant
speedups over a widely known accelerator GAMMA, demon-
strating its effectiveness in handling large, sparse matrices.
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