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Abstract— Vision Transformer (ViT) has achieved remarkable 

performance in computer vision tasks. However, its large number 

of parameters poses challenges for deployment on resource-

constrained devices.  Mixed-precision quantization is widely used 

to reduce the model size. To improve accuracy while minimizing 

the use of high bit-width precision, selecting the appropriate 

precision for each tensor is crucial. In this paper, we propose a 

precision selection strategy that leverages the mean squared 

error of linear operation outputs to improve accuracy with 

minimal use of high bit-width tensors. Moreover, we propose a 

processing element that shares most of its internal resources to 

support mixed precision. On ViT-Base with ImageNet, our 

method achieves a 0.706% accuracy improvement and 1.83× 

speedup over a prior work with identical area constraints.  

Keywords; Vision Transformer; Mixed-Precision Quantization; 

Hardware Accelerator  

I.  INTRODUCTION  

Recently, in the field of computer vision, Vision 
Transformer (ViT) has outperformed convolutional neural 
networks (CNNs). However, the large number of parameters in 
the ViT model makes its deployment on resource-constrained 
edge devices challenging. In particular, linear operations, such 
as query, key, and value generation, linear projection, and fully 
connected (FC) layers, require a large number of parameters 
and take up a dominant portion of the overall runtime, making 
it crucial to accelerate these operations.  

Mixed-precision quantization has been widely adopted in 
edge devices. To improve accuracy and reduce hardware 
requirements, many SW-HW co-design studies employ custom 
or adaptive data types [1, 2]. Among them, ANT[1] employs 
mixed precision of 4 and 8 bits and proposes a hardware 
architecture that supports it. The quantization framework of 
ANT operates in two stages. First, it selects the data type for 
each tensor among various 4-bit data types—integer (INT), 
floating point (FP), flint (a mixture of INT and FP), and power-
of-two (PoT). This selection is based on the lowest mean-
squared error (MSE) of quantization for each data type on the 
tensor. After selecting the data type, the bit-width of several 
input pairs (weight, activation) is increased from 4-bit to 8-bit 
for higher accuracy. It is applied preferentially to the input pair 
with a higher sum of the two MSE values. However, accuracy 
eventually depends on minimizing the quantization error of the 
outputs of linear operations. Simply adding the MSEs of the 
two inputs, as in ANT, which corresponds to the quantization 
error based on the input distributions, may not minimize the 
actual output quantization error and may even degrade model 

accuracy. To support mixed-precision, ANT includes 8-bit 
accumulators alongside 4-bit processing elements (PEs). 
However, since these are active only during 8-bit operations, 
hardware utilization is not good. Therefore, ANT offers low 
computational efficiency in terms of power consumption and 
area, making it unsuitable for edge devices. 

In this paper, we propose an output-quantization-error-
based precision selection method, utilizing the MSE of the 
output rather than the input of linear operations to reflect the 
quantization error better. To confirm the effectiveness of the 
proposed method, we design an area-efficient accelerator that 
supports mixed precision. Our PE shares most of the internal 
resources when supporting different precision levels, enabling 
high hardware utilization. On the ViT-Base with the ImageNet 
dataset, our method achieves a 0.706% higher accuracy and a 
1.83× speedup over a prior work with almost the same area.  

II. PROPOSED METHOD 

A. Output-Quantization-Error-Based Precision Selection 

To perform linear operations, we apply both adaptive data 
types and mixed precision. We follow the ANT framework for 
data type selection while constraining the data types to INT and 
PoT for better hardware utilization.  

 In our method, the precision selection between 4-bit and 8-
bit is based on the MSE of the output, not the input. First, we 
measure the MSE of the output quantization error by 
performing linear operations using activations and weights on 
both 32-bit FPs and quantized data types. After computing the 

Figure 1.  Accuracy result across different numbers of 8-bit quantized tensors 

Figure 2. Proposed accelerator architecture 



 

   

MSE of all layers, linear operations with high MSE values are 
quantized to 8-bit, up to the number specified by a user-defined 
hyperparameter. Since 8-bit PoT incurs hardware overhead, 
only an 8-bit integer (INT8) is used for the 8-bit quantization, 
regardless of the original 4-bit tensor data type. 

For the ViT-Base model, we quantized 50 activation–
weight tensor pairs, covering every linear operation in the 
model. As shown in Figure 1, applying 8-bit quantization to 
only about 15% of them—chosen by our output-error-based 
strategy—consistently outperforms ANT. Following the 
proposed hardware architecture in Section II.B, which favors 
using the smallest possible number of 8-bit tensors, we 
minimized 8-bit usage by evaluating from 1 to 7 tensors. 

B. Accelerator Architecture 

In contrast to ANT, which requires additional accumulators 
for 8-bit operations that are not used during 4-bit computations, 
resulting in low hardware utilization, we propose a PE that 
shares most of its internal resources to support mixed precision. 
To achieve this, we pack two 4-bit weights, enabling the PE to 
perform either a single 8-bit operation or two 4-bit operations 
in parallel. This structure enhances hardware utilization and is 
particularly effective for our method, as the proposed precision 
selection strategy minimizes the use of 8-bit tensors, resulting 
in a predominance of 4-bit operations. 

Figure 2 shows the proposed accelerator architecture. 
Activations and weights are stored in 4-bit INT (INT4), 4-bit 
PoT (PoT4), or INT8 in their respective buffers. Each decoder 
interprets data types and precision levels based on the decode-
mode (d-mode) signal, which includes four components: d-
mode-0 (INT8×INT8), d-mode-1 (INT4×INT4), d-mode-2 
(PoT4×INT4), d-mode-3 (PoT4×PoT4). Since INT4 weights 
are packed before being passed to the PE, d-mode 1 and 2 
perform 8-bit×two 4-bit operations, whereas d-mode 0 and 3 
execute standard 8-bit×8-bit operations. 

Each decoder consists of a PoT and a sign decoder. The 
PoT decoder extracts a sign signal and an unsigned INT8 value, 
while the sign decoder outputs a sign signal and an unsigned 8-
bit value (either INT8 or packed INT4), depending on the d-
mode. To reduce hardware complexity, our PE utilizes two 
unsigned multipliers to enable sharing across all modes, with 
sign processing handled during accumulation. To apply sign 
information via carry signals of packed INT4 values, two 
separate sign signals (high, low) must be extracted. In d-mode 
1 and 2, two 4-bit results from the multiplier are first bitwisely 
inverted, then the results are concatenated and accumulated 
into upper and lower 16-bit values based on the decoder's sign 
signals. In d-mode 0 and 3, which require 8-bit×8-bit 
operations, the results from both multipliers are summed after 
shifting the upper 4-bit of one operand, followed by bitwise 
inversion and accumulation without concatenation.  

III. EXPERIMENTAL RESULT 

We implement our algorithm using Pytorch with the 
ImageNet dataset for ViT-Base. Table I summarizes the 
accuracy across various data types and bit-width cases. Our 
method achieved 0.706% higher accuracy than ANT with the 
same number of 8-bit tensors (6 out of 50 pairs).   

We designed our accelerator in RTL using Verilog HDL 
and SystemVerilog, and synthesized it with a 15nm 
NangateOpenCell library. For comparison, we also designed 
and synthesized ANT using the same technology libraries. As 
shown in Table II, ANT uses a 64×64 array of 4-bit PEs 
(equivalent to 1,024 8-bit PEs), whereas our design employs 
48×64 8-bit PEs, totaling 3,072. Despite using 3× more 8-bit 
PEs, our design achieves comparable or smaller areas. This 
efficiency is attributed to our proposed PE, which shares most 
of its internal resources while supporting mixed precision.  

For performance evaluation, we used DnnWeaver[3], a 
cycle-accurate simulator. For a fair comparison, latency was 
compared under identical conditions with ANT, including 128 
bytes per cycle bandwidth, an on-chip buffer size of 512KB, 
and 6 input pair tensors quantized to 8-bit. As shown in Table 
II, our method achieves a 1.83× speedup over ANT.  

TABLE I.  ACCURACY COMPARISON OF VIT-BASE ON IMAGENET  

Scheme Data type Bit-width Accuracy 
Baseline FP 32 80.968 

ANT[1] 

Integer 
4 72.170 

8 80.582 

INT-PoT 

4 77.868 

8 80.532 

4, 8† 
78.08 

Ours 78.632 

† : Indicates mixed-precision, with 6 of 50 tensor pairs in 8-bit. 

TABLE II.  AREA, POWER, AND LATENCY CHARACTERISTICS 

Architecture ANT[1] Ours 
Component Decoder PE(Row×Column) Decoder PE(Row×Column) 

Number 128 64×64 48, 64 48×64 

Area[mm2] 
0.001 0.714 0.004 0.705 

0.715 0.709 

Power[W] 3.27 3.08 

Latency[μs] 46.455472  25.324832 

IV. CONCLUSION 

We propose an output-quantization-error-based precision 
selection method for mixed precision, which determines tensor 
precision based on the output results. Furthermore, we propose 
an area-efficient accelerator to support mixed precision. On the 
ViT-Base model with the ImageNet dataset, our method 
achieves 0.706% higher accuracy and a 1.83× speedup under 
the same conditions of 8-bit tensor usage compared to prior 
work with identical area constraints. 
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