An Area-efficient Mixed-Precision Accelerator with
Output-Error-based Quantization for ViT

Subin Park, Juhyuk Ahn, Soomin Rho, Kwangrae Kim, Ki-Seok Chung*
Department of Electronic Engineering
Hanyang University, Seoul, Korea
{subinpark, juhuyk123, smrho, kksilver91, kchung} @hanyang.ac.kr

Abstract— Vision Transformer (ViT) has achieved remarkable
performance in computer vision tasks. However, its large number
of parameters poses challenges for deployment on resource-
constrained devices. Mixed-precision quantization is widely used
to reduce the model size. To improve accuracy while minimizing
the use of high bit-width precision, selecting the appropriate
precision for each tensor is crucial. In this paper, we propose a
precision selection strategy that leverages the mean squared
error of linear operation outputs to improve accuracy with
minimal use of high bit-width tensors. Moreover, we propose a
processing element that shares most of its internal resources to
support mixed precision. On ViT-Base with ImageNet, our
method achieves a 0.706% accuracy improvement and 1.83x
speedup over a prior work with identical area constraints.

Keywords; Vision Transformer; Mixed-Precision Quantization;
Hardware Accelerator

L INTRODUCTION

Recently, in the field of computer vision, Vision
Transformer (ViT) has outperformed convolutional neural
networks (CNNs). However, the large number of parameters in
the ViT model makes its deployment on resource-constrained
edge devices challenging. In particular, linear operations, such
as query, key, and value generation, linear projection, and fully
connected (FC) layers, require a large number of parameters
and take up a dominant portion of the overall runtime, making
it crucial to accelerate these operations.

Mixed-precision quantization has been widely adopted in
edge devices. To improve accuracy and reduce hardware
requirements, many SW-HW co-design studies employ custom
or adaptive data types [1, 2]. Among them, ANT[1] employs
mixed precision of 4 and 8 bits and proposes a hardware
architecture that supports it. The quantization framework of
ANT operates in two stages. First, it selects the data type for
each tensor among various 4-bit data types—integer (INT),
floating point (FP), flint (a mixture of INT and FP), and power-
of-two (PoT). This selection is based on the lowest mean-
squared error (MSE) of quantization for each data type on the
tensor. After selecting the data type, the bit-width of several
input pairs (weight, activation) is increased from 4-bit to 8-bit
for higher accuracy. It is applied preferentially to the input pair
with a higher sum of the two MSE values. However, accuracy
eventually depends on minimizing the quantization error of the
outputs of linear operations. Simply adding the MSEs of the
two inputs, as in ANT, which corresponds to the quantization
error based on the input distributions, may not minimize the
actual output quantization error and may even degrade model

78.8
78.6

== ANT Mecthod ==®=Proposed Method

0 1 2 3 4 5 6 7
Number of 8-bit tensor

Figure 1. Accuracy result across different numbers of 8-bit quantized tensors

accuracy. To support mixed-precision, ANT includes 8-bit
accumulators alongside 4-bit processing elements (PEs).
However, since these are active only during 8-bit operations,
hardware utilization is not good. Therefore, ANT offers low
computational efficiency in terms of power consumption and
area, making it unsuitable for edge devices.

In this paper, we propose an output-quantization-error-
based precision selection method, utilizing the MSE of the
output rather than the input of linear operations to reflect the
quantization error better. To confirm the effectiveness of the
proposed method, we design an area-efficient accelerator that
supports mixed precision. Our PE shares most of the internal
resources when supporting different precision levels, enabling
high hardware utilization. On the ViT-Base with the ImageNet
dataset, our method achieves a 0.706% higher accuracy and a
1.83x speedup over a prior work with almost the same area.

II. PROPOSED METHOD

A. Output-Quantization-Error-Based Precision Selection

To perform linear operations, we apply both adaptive data
types and mixed precision. We follow the ANT framework for
data type selection while constraining the data types to INT and
PoT for better hardware utilization.

In our method, the precision selection between 4-bit and 8-
bit is based on the MSE of the output, not the input. First, we
measure the MSE of the output quantization error by
performing linear operations using activations and weights on
both 32-bit FPs and quantized data types. After computing the

k f " "]
I | sign|sign
P oT i out |NiER Ty

Bit-wise NOT

@
carry

low [15:0]

Figure 2. Proposed accelerator architecture

MSE of all layers, linear operations with high MSE values are
quantized to 8-bit, up to the number specified by a user-defined
hyperparameter. Since 8-bit PoT incurs hardware overhead,
only an 8-bit integer (INT8) is used for the 8-bit quantization,
regardless of the original 4-bit tensor data type.

For the ViT-Base model, we quantized 50 activation—
weight tensor pairs, covering every linear operation in the
model. As shown in Figure 1, applying 8-bit quantization to
only about 15% of them—chosen by our output-error-based
strategy—consistently outperforms ANT. Following the
proposed hardware architecture in Section II.B, which favors
using the smallest possible number of 8-bit tensors, we
minimized 8-bit usage by evaluating from 1 to 7 tensors.

B. Accelerator Architecture

In contrast to ANT, which requires additional accumulators
for 8-bit operations that are not used during 4-bit computations,
resulting in low hardware utilization, we propose a PE that
shares most of its internal resources to support mixed precision.
To achieve this, we pack two 4-bit weights, enabling the PE to
perform either a single 8-bit operation or two 4-bit operations
in parallel. This structure enhances hardware utilization and is
particularly effective for our method, as the proposed precision
selection strategy minimizes the use of 8-bit tensors, resulting
in a predominance of 4-bit operations.

Figure 2 shows the proposed accelerator architecture.
Activations and weights are stored in 4-bit INT (INT4), 4-bit
PoT (PoT4), or INTS in their respective buffers. Each decoder
interprets data types and precision levels based on the decode-
mode (d-mode) signal, which includes four components: d-
mode-0 (INT8XINTS), d-mode-1 (INT4xINT4), d-mode-2
(PoT4xINT4), d-mode-3 (PoT4xPoT4). Since INT4 weights
are packed before being passed to the PE, d-mode 1 and 2
perform 8-bitxtwo 4-bit operations, whereas d-mode 0 and 3
execute standard 8-bitx8-bit operations.

Each decoder consists of a PoT and a sign decoder. The
PoT decoder extracts a sign signal and an unsigned INT8 value,
while the sign decoder outputs a sign signal and an unsigned 8-
bit value (either INT8 or packed INT4), depending on the d-
mode. To reduce hardware complexity, our PE utilizes two
unsigned multipliers to enable sharing across all modes, with
sign processing handled during accumulation. To apply sign
information via carry signals of packed INT4 wvalues, two
separate sign signals (high, low) must be extracted. In d-mode
1 and 2, two 4-bit results from the multiplier are first bitwisely
inverted, then the results are concatenated and accumulated
into upper and lower 16-bit values based on the decoder's sign
signals. In d-mode O and 3, which require 8-bitx8-bit
operations, the results from both multipliers are summed after
shifting the upper 4-bit of one operand, followed by bitwise
inversion and accumulation without concatenation.

III. EXPERIMENTAL RESULT

We implement our algorithm using Pytorch with the
ImageNet dataset for ViT-Base. Table I summarizes the
accuracy across various data types and bit-width cases. Our
method achieved 0.706% higher accuracy than ANT with the
same number of 8-bit tensors (6 out of 50 pairs).

We designed our accelerator in RTL using Verilog HDL
and SystemVerilog, and synthesized it with a 15nm
NangateOpenCell library. For comparison, we also designed
and synthesized ANT using the same technology libraries. As
shown in Table II, ANT uses a 64x64 array of 4-bit PEs
(equivalent to 1,024 8-bit PEs), whereas our design employs
48x64 8-bit PEs, totaling 3,072. Despite using 3x more 8-bit
PEs, our design achieves comparable or smaller areas. This
efficiency is attributed to our proposed PE, which shares most
of its internal resources while supporting mixed precision.

For performance evaluation, we used DnnWeaver[3], a
cycle-accurate simulator. For a fair comparison, latency was
compared under identical conditions with ANT, including 128
bytes per cycle bandwidth, an on-chip buffer size of 512KB,
and 6 input pair tensors quantized to 8-bit. As shown in Table
II, our method achieves a 1.83% speedup over ANT.

TABLE L ACCURACY COMPARISON OF VIT-BASE ON IMAGENET
Scheme Data type Bit-width Accuracy
Baseline FP 32 80.968

Integer 4 72.170

ege 8 80.582

ANT[1] 4 77.868
INT-PoT 8 80.532

45 78.08

Ours ’ 78.632

T : Indicates mixed-precision, with 6 of 50 tensor pairs in 8-bit.

TABLE IIL AREA, POWER, AND LATENCY CHARACTERISTICS
Architecture ANT[1] Ours
Component Decoder | PE(RowxColumn) | Decoder | PE(RowxColumn)
Number 128 64x64 48, 64 48x64
Area[mm’] 0.001 0.714 0.004 0.705
0.715 0.709
Power[W] 3.27 3.08
Latency[us] 46.455472 25.324832

IV. CONCLUSION

We propose an output-quantization-error-based precision
selection method for mixed precision, which determines tensor
precision based on the output results. Furthermore, we propose
an area-cfficient accelerator to support mixed precision. On the
ViT-Base model with the ImageNet dataset, our method
achieves 0.706% higher accuracy and a 1.83x speedup under
the same conditions of 8-bit tensor usage compared to prior
work with identical area constraints.

ACKNOWLEDGMENT

This work was supported by the National Research
Foundation of Korea (NRF) grant funded by the Korean
Government (MSIT) (RS-2024-00409492)

REFERENCES

[1] C. Guo, et al. “Ant: Exploiting adaptive numerical data type for low-bit
deep neural network quantization,” in 55th Annual International
Symposium on Microarchitecture (MICRO), pp. 1414-1433, 2022.

[2] C. Guo, et al. “Olive: Accelerating large language models via hardware-
friendly outlier-victim pair quantization,” in 50th Annual International
Symposium on Computer Architecture (ISCA), pp 1-15, 2023.

[3] H. Sharma, et al. “From high-level deep neural models to fpgas,” in 49th

Annual International Symposium on Microarchitecture (MICRO), pp. 1-
12, 2016.

